
DYNAMICAL TITS ALTERNATIVE FOR GROUPS OF ALMOST

AUTOMORPHISMS OF TREES
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Abstract. We prove a dynamical variant of the Tits alternative for the group of almost auto-

morphisms of a locally finite tree T : a group of almost automorphisms of T either contains a

nonabelian free group playing ping-pong on the boundary ∂T , or the action of the group on ∂T
preserves a probability measure. This generalises to all groups of tree almost automorphisms a

result of S. Hurtado and E. Militon for Thompson’s group V , with a hopefully simpler proof.

1. Context and contributions

The Tits alternative is a celebrated theorem by J. Tits [Tit72] that shows a sharp dichotomy for

linear groups over a field of characteristic zero: either they are virtually solvable or they contain

a nonabelian free group. A group G is said to satisfy the Tits alternative if for every subgroup

H of G, H is virtually solvable or contains a nonabelian free group. This group property has

been established for a great deal of countable groups (see the references in [dlH00, Section II B,

Complement 42]), usually by applying the Klein ping-pong lemma to exhibit free subgroups.

There are also many countable groups known to fail this alternative, as do many groups of

homeomorphisms of compact spaces. For instance, the group Homeo(S1) of homeomorphisms

of the circle and the group of automorphisms Aut(T ) of a regular tree T of degree ≥ 3: the

former contains Thompson’s group F of piecewise affine dyadic homeomorphisms of [0, 1], the

latter contains the first Grigorchuk group, and these subgroups are not virtually solvable and do

not contain free groups (see [CFP96] and [Gri80], respectively). Nevertheless, these two examples

satisfy a dynamical variant of this condition which we formulate as follows.

Definition 1.1. Let X be a compact topological space and G a group of homeomorphisms of X.

We say that the action of G on X satisfies the dynamical Tits alternative if for every subgroup H

of G one of the following holds.

• The action of H preserves a regular probability measure on X.

• There exists a ping-pong pair for the action of H, that is, there exist g, h ∈ H and

U1, U2, V1, V2 ⊂ X disjoint open sets such that

g(X \ U1) ⊆ V1 and h(X \ U2) ⊆ V2. (1.1)

This dynamical alternative is a property of a group action, not merely of a group. Nonetheless,

if g, h ∈ H belong to a ping-pong pair, the ping-pong lemma shows that g, h generate a nonabelian

free group. Moreover, the conditions in Definition 1.1 exclude each other and it suffices to verify

them on finitely generated H ≤ G, see the beginning of the proof of Theorem A.

Remark. Previous work [MM23, HM19] involving this notion define the dynamical Tits alternative

as a weaker condition, where every subgroup H is required to preserve a probability measure or

to contain a nonabelian free group. We prefer our definition since this weaker notion is not a

Date: July 14, 2025.

2020 Mathematics Subject Classification. Primary 20F99; Secondary 20F65.

Key words and phrases. Neretin group, Tits alternative, Thompson groups.

1

ar
X

iv
:2

41
2.

08
78

4v
3 

 [
m

at
h.

G
R

] 
 1

1 
Ju

l 2
02

5

https://arxiv.org/abs/2412.08784v3


dichotomy, and moreover all known proofs of the alternative yield the stronger condition. For

instance, whenever G ↷ X satisfies Definition 1.1, a subgroup H ≤ G preserves a probability

measure on X if and only if every pair of elements of H preserve a common probability measure

on X.

Examples. A first family of examples comes from one-dimensional dynamics: the action on S1

of the group of homeomorphisms of S1 satisfies the dynamical Tits alternative by a theorem of

G. Margulis [Mar00]. A related example is the Higman-Thompson group V acting on the triadic

Cantor set, which also satisfies the alternative by work of S. Hurtado and E. Militon [HM19,

Theorem 1.3]. A generalization of both statements is given in [MM23, Theorem 1.3], where it

is shown that for any compact K ⊂ R, the defining action of the group of locally monotone

homeomorphisms of K satisfies the alternative. It is notable that the proof in [MM23] finds

sufficiently proximal elements on a group G that does not preserve a measure on K by running a

random walk on G, whereas the arguments in [Mar00, HM19] are “deterministic”. Groups acting

by homeomorphisms on dendrites also satisfy the alternative by work of B. Duchesne and N. Monod

[DM18, Theorem 1.6].

A second family of examples consists of groups acting on the boundary of Gromov-hyperbolic

spaces: a first elementary instance of this class is the action of automorphism group of a locally

finite tree T on its boundary ∂T , as follows easily from the well-known dynamical classification

of subgroups of Aut(T ), see [Tit70]. More generally, if (M,d) is a Gromov-hyperbolic and proper

metric space such that Isom(M,d) acts cocompactly on M , then the action of Isom(M,d) on the

Gromov boundary ∂M satisfies the dynamical Tits alternative (see [CCMT15], and also [AS22,

Theorem 1.10] for a probabilistic version).

This note is concerned with almost automorphism groups of locally finite trees, which is a large

family of locally compact and totally disconnected groups that arise as follows: let T be a locally

finite rooted tree and ∂T be its space of ends. The group of rooted tree automorphisms Autr(T )

acts on ∂T preserving the so-called visual metric. The group AAut(T ) of almost automorphisms

of ∂T consists of all homeomorphisms of ∂T that are local homothecies for this metric, that is,

that locally rescale it. The natural group topology on AAut(T ) is not the compact-open topology,

but the unique group topology such that Aut(T ) is a compact open subgroup of AAut(T ). See

Section 2 for more precise statements.

If d ≥ 2, k ≥ 1 and Td,k is the rooted tree where the root has k children and all other vertices

have d children, then AAut(Td,k) is known as a Neretin group. These groups are known to be

simple [Kap99], compactly presented [LB17] and to contain the Higman-Thompson group Vd,k as a

dense subgroup. They are the first examples of compactly generated simple groups without lattices

[BCGM12] and moreover admit no invariant random subgroups by a result of T. Zheng [Zhe19].

We show that the action of AAut(T ) on ∂T satisfies the dynamical Tits alternative for any

locally finite rooted tree T .

Theorem A. Let T be a locally finite rooted tree. The action of AAut(T ) on the boundary ∂T
satisfies the dynamical Tits alternative.

Some interesting groups to which Theorem A applies are the groups VG considered by V. Nekra-

shevych in [Nek18], where G ≤ Autr(T2,2) is a self-similar group. Here VG is the subgroup of

AAut(T2,2) generated by G and Higman-Thompson’s V .

Fix a linear order on ∂T that is compatible with the tree structure. We denote by VT the group

of elements of AAut(T ) acting in a locally order-preserving manner. For instance, VTd,k
is the

Higman-Thompson group associated to Td,k, and all topological full groups of irreducible infinite
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one-sided shifts of finite type are naturally subgroups of some VT , see [Led20, Theorem 3.8]. We

call VT the Higman-Thompson group associated to T , although this name is not standard. The

proof of Theorem B below gives a shorter and hopefully more conceptual approach to [HM19,

Theorem 1.3] when specialized to the Higman-Thompson group V .

Theorem B. Let H be a finitely generated subgroup of VT . Then the action of H on ∂T has a

finite orbit or admits a ping-pong pair.

We emphasize that Theorem B is not new, since the proof of [HM19, Theorem 1.3] shows that

V verifies the (slightly stronger) conclusion of Theorem B and general arguments allow to extend

the result from V to any group VT .

Two important ingredients in both proofs are a characterization of relatively compact subgroups

of AAut(T ) by A. Le Boudec and P. Wesolek [LBW19] and a description of the dynamics of

individual elements of AAut(T ) by G. Goffer and W. Lederle [GL21] (building on work of O.

Salazar-Dı́az [SD10]).

Acknowledgements. The author wishes to thank Gil Goffer, Adrien Le Boudec, Waltraud Led-

erle, Nicolás Matte Bon, Mikael de la Salle and the anonymous referee for useful comments on a

previous draft of this preprint. The author also thanks his advisor Nicolás Matte Bon for advice

and encouragement, and Alejandra Garrido for pointing out [GL21].

2. Preliminaries

We give some background on AAut(T ), describe the dynamics of individual elements of AAut(T ),

recall the definition of the Vietoris topology on closed subsets of a space and fix some notation.

For more details on this material, see [GL21, LBW19, GL18].

Notation. Given a metric space (X, d), A ⊆ X and ε > 0, we denote Aε = {x ∈ X | d(x,A) ≤ ε}.
When T is a rooted tree, we write Autr(T ) for the group of tree automorphisms of T that fix the

root.

Almost automorphism groups of trees. Let T be a locally finite rooted tree with no leaves.

We denote its root by v0, and assume that all edges are directed away from v0. A caret is a subtree

of T consisting of a vertex, its children, and the edges between them. A subtree is complete if it

is a union of carets, and when T1, T2 are rooted complete subtrees of T we denote by T2 \ T1 the

union of all carets in T2 that are not included in T1. The set of leaves of a tree T is denoted by

LT .

Let ∂T be the space of ends of T , that is, the set of (one-sided) infinite directed paths starting

at v0. We equip ∂T with the topology induced by the visual metric defined as d(ξ, ξ′) = 2−N(ξ,ξ′)

for ξ, ξ′ ∈ ∂T where N(ξ, ξ′) ∈ N is the smallest integer n such that ξn ̸= ξ′n. The space (∂T , d)

is totally disconnected and compact, and its topology has a basis of clopen balls ∂Tv = {ξ ∈ ∂T |
v is in ξ} where v ∈ V (T ).

An almost automorphism of T is a homeomorphism g of ∂T such that there exists a partition of

∂T into clopen ballsD1, . . . , Dn and positive numbers λ1, . . . , λn such that d(g(y), g(z)) = λjd(y, z)

for all y, z ∈ Dj . Such a partition is said to be admissible for g. Another way of viewing an almost

automorphism is the following: take T1, T2 finite subtrees of T with root v0, so T \ T1, T \ T2 are

naturally rooted forests. Then any isomorphism g : T \ T1 → T \ T2 of rooted forests determines

a g ∈ AAut(T ), and conversely any almost automorphism arises in this manner, although not

uniquely so.

Call an almost automorphism g ∈ AAut(T ) elliptic if there exists a partition P of ∂T into

clopen balls that is admissible for g and g-invariant, that is, such that gP = P. The following
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theorem is stated for Neretin groups in [LBW19], but the proof for any locally finite tree T is the

same word by word.

Proposition 2.1 ([LBW19, Corollary 3.6]). Let H ≤ AAut(T ) be finitely generated. The following

are equivalent.

• H is relatively compact in AAut(T ).

• Every element of H is elliptic.

• There is a partition P of ∂T into clopen balls such that P is admissible for every h ∈ H.

Moreover, if these conditions hold and Q is any partition of P into clopen balls such that Q is

admissible for every element of some generating set of H, then P can be chosen to be finer than

Q.

Fix a family of total linear orders {<v}v∈V (T ) indexed by the vertices of T , where <v is an

order on the children of v ∈ V (T ). This family induces a linear order < on ∂T by declaring ξ < ξ′

if ξ, ξ′ ∈ ∂T and ξn <ξn−1 ξ′n, where n = N(ξ, ξ′) ∈ N. We call g ∈ AAut(T ) a Higman-Thompson

element if there exists an admissible partition P for g such that g
∣∣
D

is order-preserving for all

D ∈ P. The subset of Higman-Thompson elements of AAut(T ) is a group that we denote by

VT . We omit {<v}v∈V (T ) from the definition of VT to keep the notation uncluttered, but for

non-regular trees T the group VT may depend on the choice of the orders {<v}v∈V (T ).

Since the elliptic elements of VT are exactly the elements of finite order in VT , as in [LBW19]

Proposition 2.1 yields the following result.

Corollary 2.2 ([LBW19, Corollary 3.7]). Any finitely generated subgroup of VT composed entirely

of elliptic elements is finite.

Dynamics of almost automorphisms. We will make use of a description of the dynamics of

individual elements of AAut(T ), which is one of the subjects of [GL21]. Again, the proofs are

given for T = Td,k but a careful reading shows that all arguments hold in the general case.

We need some definitions, following [GL21]: a tree pair is a tuple (κ, T1, T2) where T1, T2 ⊂ T
are finite complete trees with root v0 and κ : LT1 → LT2 is a bijection between the leaves of T1 and

the leaves of T2. We say that a tree pair (κ, T1, T2) is associated to an element g ∈ AAut(T ) if g

arises from an isomorphism of rooted forests g : T \ T1 → T \ T2 such that κ = g
∣∣
LT1

. In this case

{∂Tv}v∈LT1 is an admissible partition for g. We will only consider tree pairs that are associated

to some almost automorphism of T . All tree pairs are associated to almost automorphisms when

T = Td,k but this is not true in general since the connected components of T \ T1 and T \ T2 need

not be isomorphic.

Consider an orbit O = {u0, . . . , un} ⊆ LT1 ∪ LT2 of the partial action of κ on LT1 ∪ LT2, that
is, O is such that u0, . . . , un−1 ∈ LT1, u1, . . . , un ∈ LT2, κ(uj) = uj+1 for all j = 0, . . . , n− 1 and

either

• u0 /∈ LT2 and un /∈ LT1, or
• u0 ∈ LT2, un ∈ LT1 and κ(un) = u0.

The orbit O is said to be

• an attracting chain if un is a descendant of u0 in T , in which case un is called the attractor

of the orbit,

• a repelling chain if u0 is a descendant of un in T , in which case u0 is called the repeller of

the orbit,

• a periodic chain if κ(un) = u0, and

• a wandering chain if u0 /∈ T2 (that is, u0 is a descendant of some leaf in LT2) and un /∈ T1
(that is, un is a descendant of some leaf in LT1).
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These options are mutually exclusive. We say that (κ, T1, T2) is a revealing tree pair if each

connected component of T1\T2 contains a repeller and each connected component of T2\T1 contains
an attractor. In this case, if C ⊆ T1 \ T2 is a connected component containing a repeller u0, the

orbit {u0, . . . , un} is such that un is the root of C and u0 is the unique repeller in C. Similarly, if

C ⊆ T2 \ T1 is a connected component containing an attractor un, the orbit {u0, . . . , un} is such

that u0 is the root of C and un is the unique attractor in C. Revealing tree pairs were introduced

by O. Salazar-Dı́az in [SD10] to describe the dynamics of individual elements of Thompson’s V .

If (κ, T1, T2) is a revealing tree pair, then every orbit O is an attracting, repelling, periodic or

wandering chain: assume that O is not periodic, so it must end in an element un ∈ LT2 \ LT1 and

begin in an element u0 ∈ LT1 \LT2. If u0 ∈ T2, then u0 is the root of its component of T2 \ T1 and

un must be the attractor in this component. If un ∈ T1, then un is the root of its component in

T1 \ T2 and u0 must be the repeller in this component. If neither happen, then O is wandering.

Theorem 2.3 ([GL21, Lemma 2.17]). Every element of AAut(T ) is associated to some revealing

tree pair.

As a consequence we deduce the following corollary, the proof of which uses ideas present in

[GL21, Section 3.1] (compare [HM19, Lemma 5.5] for Higman-Thompson’s group V ).

Corollary 2.4. If g ∈ AAut(T ) there is a partition ∂T = Ug ⊔ Vg into g-invariant clopen subsets

such that Ug is equal to the open subset of ξ ∈ ∂T that admit a neighborhood U ⊆ ∂T such that

some positive power of g
∣∣
U

is an isometry onto U . Moreover, the following properties are verified.

• There is a positive power of g
∣∣
Ug

that is an isometry (for the visual metric of ∂T ).

• There are finitely many g-periodic points in Vg, which we denote Perhyp(g).

• There is a partition Perhyp(g) = Perrep(g)⊔Peratt(g) into repelling and attracting periodic

points, such that for every ε > 0, there exists N ∈ N so that for all k ≥ N we have

gk(Vg \ Perrep(g)ε) ⊆ Peratt(g)
ε and g−k(Vg \ Peratt(g)ε) ⊆ Perrep(g)

ε. (2.1)

Proof. Let (κ, T1, T2) be a revealing pair associated to g. Write Ũg =
⊔
∂Tu where the union is

over all vertices u ∈ LT1 ∪LT2 that are in periodic chains, and set Ṽg = ∂T \ Ũg. The sets Ũg and

Ṽg are g-invariant and clopen, and if ∂Tu ⊆ Ũg where u ∈ LT1 ∪LT2, there exists n ∈ N such that

gn(∂Tu) = ∂Tu and gn
∣∣
∂Tu

is an isometry. By taking appropriate powers of g we see that there is

a k ∈ N such that gk
∣∣
Ũg

is an isometry.

Now let ∂Tu ⊆ Ṽg where u ∈ LT1∪LT2 is in an attracting chain {u0, . . . , un}. Then gn(∂Tu0) ⊊
∂Tu0 and gn

∣∣
∂Tu0

is a contraction, so in particular gn(∂Tu) ⊊ ∂Tu and gn
∣∣
∂Tu

is a contraction.

Thus there exists a unique gn-fixed point ξu ∈ ∂Tu, and it also verifies
⋂

k∈N gkn(∂Tu) = {ξu}. Set

Peratt(g) = {ξu | u is in an attracting chain}.

If ∂Tu ⊆ Ṽg where u ∈ LT1 ∪ LT2 is in a repelling chain instead, the same argument applied

to g−1 shows that for some n ∈ N there exists a unique gn-fixed point ξu ∈ ∂Tu such that⋂
k∈N g−kn(∂Tu) = {ξu}. Set

Perrep(g) = {ξu | u is in a repelling chain}.

The sets Peratt(g) and Perrep(g) are disjoint and finite. Moreover, their union gives all g-periodic

points in Ṽg since any ξ ∈ ∂Tu where u ∈ LT1 ∪LT2 is in a wandering chain cannot be a g-periodic

point: indeed, if the orbit {u0, . . . , un} is wandering, then the connected component of un ∈ LT2\T1
in T2 \ T1 has a root ua ∈ LT1 which must be the first element of an attracting orbit. Thus

d
(
gn−k+j (∂Tuk

) , gj (ξua)
) j→∞−−−→ 0
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for every k = 0, . . . , n. In the same way, the root ur ∈ LT2 of the connected component of

u0 ∈ LT1 \ T2 in T1 \ T2 is the last element of a repelling orbit, so

d
(
g−k−j (∂Tuk

) , g−j (ξur
)
) j→∞−−−→ 0

for every k = 0, . . . , n. Since ξur ̸= ξua , there are no periodic points in any ∂Tuk
for k = 0, . . . , n.

To prove that Ṽg, Peratt(g), Perrep(g) verify the last item of the corollary, by symmetry it suffices

to prove the first statement in (2.1). To do this, take a clopen U ⊊ Ṽg \ Perrep(g) and ε > 0, and

let u ∈ LT1 ∪ LT2. If u is in an attracting or wandering chain, it is clear that there is an N ∈ N
such that gk(U ∩ ∂Tu) ⊆ Peratt(g)

ε for all k ≥ N . If u is in a repelling orbit {u0, . . . , un}, then the

equality ⋂
k∈N

g−kn(∂Tu) ∩ (U ∩ ∂Tu) = ∅

shows that there is a l ∈ N such that g−kn(∂Tu) ∩ (U ∩ ∂Tu) = ∅ for all k ≥ l. The sets

gr(∂Tu), r = 0, . . . , n− 1 are pairwise disjoint, and we conclude that ∂Tu ∩ gk(U ∩∂Tu) = ∅ for all

k ≥ nl. Upon replacing U by gr(U) for some sufficiently big r ∈ N we may assume that U ∩ ∂Tu is

empty for all u ∈ LT1 ∪ LT2 in a repelling orbit. Hence (2.1) holds for a sufficiently large N ∈ N.
Up to now, Ũg, Ṽg satisfy all the required properties except that Ṽg could still contain some

points that admit a neighborhood U ⊆ ∂T such that some positive power of g
∣∣
U

is an isometry

onto U . Call the set of such points I ⊆ Ṽg. All elements in Ṽg \ (Perrep(g) ⊔ Peratt(g)) admit a

neighborhood U such that gj(U)∩U = ∅ for all j ̸= 0, so I ⊆ Perrep(g)⊔Peratt(g) is finite. Thus

setting Ug = Ũg ⊔ I, Vg = Ṽg \ I ensures that all properties in the statement of the corollary are

verified. □

In contrast with the trees Td,k, the boundary of an arbitrary locally finite tree T may contain

isolated points and the three items in the previous corollary do not specify Ug, Vg uniquely. The

definition of Ug in the statement of the corollary gives a canonical definition in any case.

Vietoris topology. Given a topological space X, we denote by 2X the space of closed subsets of

X equipped with the Vietoris topology, defined as the topology with subbasis

{K ∈ 2X | K ∩ U ̸= ∅, K ∩ V = ∅}

where U, V range over all open subsets of X. If X is compact metrizable then 2X is also compact

metrizable [Eng89, Section 4.5], and in this case any action by homeomorphisms of a countable

group on X induces naturally an action by homeomorphisms on 2X [Eng89, Section 3.12].

3. Proofs

We first gather some useful lemmas.

Lemma 3.1 (Neumann’s lemma, [Neu54, Lemma 4.1]). Let G be a group acting on a set X and

assume that the action has no finite orbits. Then for every pair of finite subsets A,B of X there

exists an element g ∈ G such that g(A) ∩B is empty.

Lemma 3.2 ([MM23, Proposition 1.16]). Let G be a group acting by homeomorphisms on a

compact metric space (X, d). Assume that

i. there exists a positive integer p such that for any ε > 0 there exist nonempty finite sets

A,B ⊂ X of cardinality at most p with g(X \Aε) ⊆ Bε for some g ∈ G, and

ii. there are no finite G-orbits.

Then the action of G on X has a ping-pong pair.
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Proof. Notice that condition (i) is equivalent to the existence of finite sets A,B of X that work for

any ε > 0: a pair (A,B) of nonempty subsets of X of cardinality at most p is called a contraction

pair if for every neighborhood U, V of A,B respectively there exists g ∈ G such that g(X \U) ⊂ V .

Then condition (i) and the compactness of X imply that there exists a contraction pair.

Moreover, if (A,B) is a contraction pair and u, v ∈ G then (u(A), v(B)) is a contraction pair

too. Thus, by (ii) and Lemma 3.1, our contraction pair (A,B) can be taken such that A and B

are disjoint.

Using (ii) and Lemma 3.1 again we deduce that there exist two contraction pairs (A1, B1), (A2, B2)

where the A1, A2, B1, B2 are pairwise disjoint. If Ui, Vi, i = 1, 2 are pairwise disjoint neighborhoods

of Ai, Bi, i = 1, 2 respectively, we can find g1, g2 ∈ G such that gi(X \ Ui) ⊆ Vi, i = 1, 2. These

constitute a ping-pong pair. □

Lemma 3.3. Let G be a compact topological group and g ∈ G. For every neighborhood U of the

identity there exists a strictly increasing sequence {nj}j∈N ⊆ N such that gnj ∈ U for all j ∈ N.

Proof. Let µ be the normalized Haar measure on G, so that µ is a probability measure of complete

support on G and left multiplication by g preserves µ. Let V ⊆ U be an open neighborhood of the

identity such that V · V −1 ⊆ U . Since µ(V ) > 0, Poincaré’s recurrence theorem implies that there

is a sequence {nj}j∈N ⊆ N such that µ(V ∩gnjV ) > 0 for all j ∈ N. In particular gnj ∈ V ·V −1 ⊆ U

for all j ∈ N. □

The core of the proof of Theorem A is the following statement, which uses ideas from [LBMB22,

Proposition 5.2] and implies the extreme contraction properties required by Lemma 3.2. If g ∈
AAut(T ) we use the same notation as Corollary 2.4, so we write Ug ⊆ ∂T for the stable set of g

and Perhyp(g), Perrep(g) for the hyperbolic and repelling points of g respectively.

Recall that we denote by 2∂T the compact metrizable space of all closed subsets of ∂T equipped

with the Vietoris topology.

Proposition 3.4. Let H ≤ AAut(T ) and assume that
⋂

h∈H Uh is empty. Then there exists a

finite set B ⊂ ∂T such that for every ε > 0 there is a h ∈ H with h(∂T \Bε) ⊆ Bε.

Proof. By compactness there exist elements h1, . . . , hk ∈ H such that
⋂

1≤j≤k Uhj
is empty. By

taking powers of the hj we can assume that every hj

∣∣
Uj

is an isometry. Set B =
⋃

1≤j≤k Perhyp(hj)

and C1 = ∂T \Bε.

Now h1 restricted to Uh1 is an isometry. Since isometry groups of compact spaces are compact

for the compact-open topology, Lemma 3.3 and a diagonal argument shows that there exists a

strictly increasing sequence {nj}j∈N ⊆ N such that

sup
x∈Uh1

d
(
h
nj

1 (x), x
)
≤ 1

j

for all j ∈ N.
For any closed D ⊆ ∂T denote by OrbH(D) the closure of the H-orbit of D in 2∂T . By taking

a limit point of {hnj

1 (C1)}j∈N in 2∂T we obtain a closed C2 ∈ OrbH(C1) with

C2 ⊆ (C1 ∩ Uh1
) ⊔ Perhyp(h1).

Lemma 3.3 applied to h2 gives again the existence of a sequence {n′
j}j∈N ⊆ N such that

sup
x∈Uh2

d
(
h
n′
j

2 (x), x
)
≤ 1

j

7



for all j ∈ N. The finite set Perrep(h2) can only intersect C2 in Perhyp(h1), so by taking again a

limit point of {hn′
j

2 (C2)}j∈N we obtain a closed C3 ∈ OrbH(C2) ⊆ OrbH(C1) with

C3 ⊆ (C2 ∩ Uh2
) ⊔ Perhyp(h2) ⊆ (C1 ∩ Uh1

∩ Uh2
) ⊔ (Perhyp(h1) ∪ Perhyp(h2)) .

Notice that, again, the finite set Perrep(h3) can only intersect C3 in Perhyp(h1) ∪ Perhyp(h2).

By iterating this argument we produce, for every j = 2, . . . , k + 1, a closed subset Cj ∈
OrbH(Cj−1) ⊆ OrbH(C1) such that

Cj ⊆ (Cj−1 ∩ Uhj−1) ⊔ Perhyp(hj−1) ⊆ (C1 ∩ Uh1 ∩ · · · ∩ Uhj−1) ⊔

 ⋃
1≤i≤j−1

Perhyp(hi)

 .

In particular Ck+1 ⊆
⋃

1≤i≤k Perhyp(hi) = B, and we are done. □

Proof of Theorem A. Take a subgroup H ≤ AAut(T ) and suppose that H does not preserve

a probability measure on ∂T . If every finitely generated subgroup of H preserves a probability

measure on ∂T , the compactness of Prob(∂T ) equipped with the weak-∗ topology implies that H

preserves a probability measure on ∂T . We may assume then that H is finitely generated.

Suppose that the set UH =
⋂

h∈H Uh is nonempty. Since every Uh is dynamically defined (see

the definition of Uh in Corollary 2.4), we have that UH is H-invariant. The closed set UH may

be written as ∂T ′ for some rooted subtree T ′ ⊆ T , and we equip UH with the restriction of the

visual metric of ∂T , which coincides with the visual metric of ∂T ′. Every element of H has a

proper power that acts as an isometry on ∂T ′, so the action of H on ∂T ′ is by elliptic almost

automorphisms of T ′. Since H is finitely generated, Proposition 2.1 shows that the image of H

in AAut(T ′) is relatively compact. Thus H preserves a measure on ∂T ′ ⊆ ∂T , a contradiction.

We conclude that UH is empty, and in this case Proposition 3.4 and Lemma 3.2 imply that there

exists a ping-pong pair for the action of H. □

Remark. The proof of Theorem A shows a slightly stronger statement, namely that for any finitely

generated H ≤ AAut(T ), either H contains a ping-pong pair or there exists a nonempty closed set

C ⊆ ∂T such that the action of H on C is equicontinuous.

Recall that VT denotes the Higman-Thompson group associated to T .

Proof of Theorem B. Fix a linear order on ∂T as in the definition of VT . TakeH ≤ VT a finitely

generated subgroup and suppose that H acts without finite orbits on ∂T . If UH =
⋂

h∈H Uh is

nonempty, consider again a rooted subtree T ′ ⊆ T such that UH = ∂T ′, so H acts on UH by

elliptic Higman-Thompson elements of AAut(T ′) for the induced order on ∂T ′. Corollary 2.2

shows that the image of H in AAut(T ′) is finite, and thus there exists a finite H-orbit in UH .

This is a contradiction, hence UH is empty. Again Proposition 3.4 and Lemma 3.2 show that there

exists a ping-pong pair for the action of H. □

4. Open questions

We finish with some hopefully tractable open questions.

Question. R. Grigorchuk, V. Nekrashevych and V. Sushchansky introduce in [GNS00] the group

R of homeomorphisms of Cantor space defined by asynchronous transducers, which is known

[BB17] to contain the higher-dimensional Brin-Thompson groups from [Bri04]. On the other hand,

the automorphism group of a Higman-Thompson group Vd,k coincides with the subgroup of bi-

synchronizing transducers inside R [BCM+19]. Do any of these groups satisfy the dynamical Tits

alternative?

8



Question. Let G be a group of homeomorphisms of a compact topological space X such that its

groupoid of germs is hyperbolic in the sense of V. Nekrashevych, see [Nek15]. Does the action of

G on X satisfy the dynamical Tits alternative? Theorem A shows that this is true for the groups

VG, whose groupoid of germs is hyperbolic whenever G is a contracting self-similar group.
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