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Abstract. Let µ be a nondegenerate probability measure with finite entropy on a count-
able group G ≤ Homeo+(S1) of orientation-preserving homeomorphisms of the circle
acting proximally, minimally and topologically nonfreely on S1. We prove that the circle
S1 endowed with its unique µ-stationary probability measure is not the Poisson bound-
ary of (G, µ). When G is Thompson’s group T and µ is finitely supported, this answers
a question posed by B. Deroin [Der13] and A. Navas [Nav18].

1. Introduction

Countable subgroups of the group Homeo+(S1) of orientation-preserving homeomor-
phisms of the circle S1 are a well-studied family of groups that are connected with the
theory of circularly-ordered groups [BS18], left-ordered groups [DNR16], foliations of 3-
manifolds [Cal07], and bounded cohomology [Ghy87]. We refer to [Ghy01,Nav11] for many
examples of groups acting on the circle and an overview of the fundamentals of the subject.

Thompson’s group T is the group of dyadic piecewise affine homeomorphisms of the
circle S1 ∼= R/Z. That is, an orientation-preserving homeomorphism g : S1 → S1 belongs
to T if there exists a finite subset of dyadic rationals D ⊂ Z[1/2]/Z such that g restricted
to every connected component C of S1 \D is of the form g(x) = 2kx+ b, x ∈ S1, for some
k ∈ Z and b ∈ Z[1/2]/Z. This group was introduced by R. Thompson in unpublished
notes [Tho] as the first example of a finitely presented infinite simple group, and has been
extensively studied from algebraic, dynamical, and cohomological viewpoints, see, e.g.,
[Bri96,GS87,BG84].

In this paper we focus on random walks on subgroups of Homeo+(S1), and our results
below apply in particular to Thompson’s group T . Given a probability measure µ on a
countable group G, the (right) µ-random walk on G is the Markov chain (wn)n≥0 with
state space G, transition probabilities P(wn+1 = g | wn = h) = µ(g−1h), for each g, h ∈ G

and n ≥ 0, and initial state w0 = eG. In what follows we work under the assumption that
µ is nondegenerate, meaning that the semigroup generated by its support coincides with
the group G.

The Poisson boundary of the pair (G,µ) is a probability space (∂µG, ν) that captures
all the stochastically significant asymptotic behavior of sample paths of the µ-random
walk on G, and is defined as follows. A µ-boundary of G is a probability space (X, ν)
equipped with a measurable G-action and a shift-invariant boundary map ξ : GN → X on
the space of trajectories (GN,P) of the µ-random walk, such that ξ∗P = ν. The Poisson
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boundary (∂µG, ν) is the maximal µ-boundary, in the sense that any µ-boundary is a
G-equivariant measurable quotient of it, and is unique up to G-equivariant isomorphisms.
See also Definition 2.1 for an equivalent definition of the Poisson boundary. The pair
(∂µG, ν) is a probability space equipped with a measure-class preserving action of G such
that ν is µ-stationary, that is, the equation ν = µ ∗ ν =

∑
g∈G µ(g)g∗ν holds. Recall that

a function f : G → R is µ-harmonic if f(g) =
∑
h∈G f(gh)µ(h) for all g ∈ G. The Poisson

boundary encodes the space H∞(G,µ) of bounded µ-harmonic functions on G via the
so-called Poisson transform L∞(∂µG, ν) → H∞(G,µ) given by

F 7→
(
f(g) :=

∫
∂µG

F (gx) dν(x), for g ∈ G

)
. (1)

An action of a countable group G on S1 by homeomorphisms is called
• minimal if all the G-orbits are dense in S1,
• proximal if for every proper closed interval I ⫋ S1 and all ε > 0 there is g ∈ G

with diameter diam(g(I)) < ε, and
• nonelementary if there is no G-invariant probability measure on S1.

A theorem of G. Margulis [Mar00] (see also [Ant84]) states that for any nonelementary
subgroup G ≤ Homeo+(S1) there exists aG-equivariant quotient of S1, still homeomorphic
to S1, on which G acts minimally and proximally. Thus, the study of any nonelementary
group action on S1 often reduces to the study of a minimal and proximal action (see
Subsection 2.4 for a precise statement). One can verify that the action of Thompson’s
group T on S1 is minimal and proximal, and hence nonelementary.

Consider a countable group G acting proximally and minimally on S1, and let µ be a
nondegenerate probability measure on G. B. Deroin, V. Kleptsyn and A. Navas [DKN07]
show that there exists a unique µ-stationary probability measure ν on S1, and that for
P-almost every sample path w = (wn)n≥0 ∈ GN of the µ-random walk on G there ex-
ists a point ξ(w) ∈ S1 such that limn→∞(wn)∗ν = δξ(w) in the weak-∗ topology, where
δξ(w) denotes the point probability measure at ξ(w). The measure ν coincides with the
distribution of ξ(w) on S1, and therefore the space (S1, ν) provides a µ-boundary of G.

1.1. Main results. We say that an action of a group G ≤ Homeo+(S1) on S1 is topolog-
ically nonfree if there exists g ∈ G \ {eG} whose set of fixed points has nonempty interior.
Note that the action of Thompson’s group T on S1 is topologically nonfree.

Theorem A. Let G ≤ Homeo+(S1) be a countable group whose action on S1 is minimal,
proximal and topologically nonfree, and let µ be a finite entropy nondegenerate probability
measure on G. Then (S1, ν) is not the Poisson boundary of (G,µ).

In the particular case of finitely supported nondegenerate probability measures on T ,
Theorem A answers a question asked by B. Deroin [Der13, Item (2) in Section 6] and by
A. Navas in his ICM survey [Nav18, Question 19]. One should contrast Theorem A with
[Der13, Theorem 1.1], where B. Deroin proves that for subgroups G ≤ Diff2(S1) within
a certain class, that contains in particular any cocompact lattice in PSL2(R), the space
(S1, ν) is the Poisson boundary of (G,µ) when µ satisfies suitable moment conditions.
These groups fall within a family that is conjectured to be composed only of Fuchsian
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groups and virtually free groups [AFK+19, Table 1], and hence their Poisson boundaries
could alternatively be described using their Gromov boundaries; see Subsection 1.2.

Theorem A is related to the well-known open problem [CFP96] on whether Thompson’s
group F , the group of dyadic piecewise affine homeomorphisms of the interval [0, 1], is
amenable. Indeed, the action of a countable group G on its Poisson boundary (∂µG, ν)
is amenable [Zim78, Theorem 5.2], and hence for ν-almost every x ∈ ∂µG the stabilizer
subgroup Gx ≤ G is amenable (see [ADR00, Corollary 5.3.33]). If the circle were the
Poisson boundary of T then we would conclude that F is amenable, since for each x ∈ S1

the stabilizer Tx ≤ T contains a copy of F . Theorem A implies that this strategy does
not work whenever the probability measure µ has finite entropy.

The proof of Theorem A is sketched in Subsection 1.2, and relies on the conditional en-
tropy criterion of V. Kaimanovich [Kai85] together with a conditional version of a method
used by A. Erschler to show the positivity of asymptotic entropy [Ers04]. As is often
the case with entropy methods for Poisson boundaries, our proof does not provide ex-
plicit bounded µ-harmonic functions that do not arise from the µ-boundary (S1, ν) or,
equivalently, an explicit µ-boundary that is not a G-equivariant quotient of (S1, ν). Our
second theorem gives precisely this information for a more restricted class of subgroups of
Homeo+(S1), which still includes Thompson’s group T .

We denote by PAff+(S1) the group of piecewise affine orientation-preserving homeo-
morphisms of S1 ∼= R/Z whose derivative has finitely many discontinuity points. Given
g ∈ PAff+(S1) denote by Brg ⊆ S1 the (finite) set of discontinuities of its derivative,
which we call the breakpoints of g. For a countable group G ≤ PAff+(S1) with a mini-
mal, proximal and topologically nonfree action on S1, we define Br = ∪g∈GBrg the set
of breakpoints of G and show that, with respect to an appropriate action of G, there is a
µ-stationary probability measure ν̃ on RBr such that (RBr, ν̃) is a µ-boundary of G (see
Subsection 1.3). We call this space the breakpoint boundary of G. This construction is
analogous to the boundary of Thompson’s group F constructed by V. Kaimanovich in
[Kai17].

Theorem B. Let G be a countable subgroup of PAff+(S1) whose action on S1 is minimal,
proximal, and topologically nonfree, and let µ be a nondegenerate probability measure on
G such that

∑
g∈G µ(g)|Brg| < ∞. Then the breakpoint boundary (RBr, ν̃) is not a G-

equivariant quotient of (S1, ν). In particular, (S1, ν) is not the Poisson boundary of (G,µ).

The class of groups to which Theorem A applies is larger than that considered in The-
orem B. Indeed, note that PSL2(Z[

√
2]) acts minimally and proximally on S1 through its

natural projective action, and it follows from [Cor21, Theorem 1.4] that it does not embed
into PAff+(S1). Consider the group G of all piecewise-PSL2(Z[

√
2]) homeomorphisms of

S1 with breakpoints in the set of fixed points of hyperbolic elements in PSL2(Z[
√

2]). Then
G is countable, satisfies the hypotheses of Theorem A and is not conjugate to a subgroup
of PAff+(S1) since it contains PSL2(Z[

√
2]).

1.2. Further background on identification of Poisson boundaries. Given a prob-
ability measure µ on a countable group G, a natural question is to find an explicit model
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for the Poisson boundary of (G,µ). That is, to identify the Poisson boundary of the ran-
dom walk with a concrete µ-boundary expressed in terms of geometric, combinatorial, or
algebraic properties of G. Currently, the main tools for studying this question are based
on entropy. For a probability measure µ on a group G, the Shannon entropy of µ is defined
as H(µ) := −

∑
g∈G µ(g) log(µ(g)). The asymptotic entropy of a probability measure µ is

defined by h(µ) := limn→∞H(µ∗n)/n. This quantity was introduced by A. Avez [Ave72],
who proved that if µ is finitely supported and h(µ) = 0, then the Poisson boundary of
(G,µ) is trivial. The entropy criterion of Derriennic [Der80] and Kaimanovich-Vershik
[KV83, Theorem 1.1] states that if H(µ) < ∞, then h(µ) > 0 if and only (G,µ) has
a nontrivial Poisson boundary. This result was later extended by V. Kaimanovich, who
proved that a µ-boundary of G is the Poisson boundary if and only if the sequence of mean
conditional entropies at time n of µ (see Definition 2.5) grows sublinearly [Kai85, Theorem
2] [Kai00, Theorem 4.6] (see also Theorem 2.6 below). It is important to note that these
criteria have two main restrictions: the first is that the hypothesis H(µ) < ∞ is crucial
and the criteria do not work in a general context for measures with infinite entropy. The
second restriction for the entropy criteria is that one needs to identify by other means a
µ-boundary of G that serves as a potential candidate for the Poisson boundary. There
are families of groups for which one can prove that some random walks on them have
a nontrivial Poisson boundary by using the entropy criterion but for which there is no
known nontrivial µ-boundary. An example of this is the wreath product Z/2Z ≀Z3, which
has nontrivial Poisson boundary for each nondegenerate probability measure with finite
entropy [Ers04, Theorem 3.1].

Next, we recall results on the identification of the Poisson boundary for two families of
groups: Gromov-hyperbolic groups and wreath products. For a more comprehensive list
of results regarding the identification of Poisson boundaries of random walks on groups,
we refer to [Ers10] and [SM24, Section 3.3.5].

Gromov-hyperbolic groups. The complete description of nontrivial Poisson boundaries goes
back to E. Dynkin and M. Maljutov [DM61], who proved that for any non-abelian free
group and any probability measure supported on a free generating set, the correspond-
ing Poisson boundary can be identified with the space of infinite reduced words of the
free group endowed with its unique stationary measure. This result was extended to all
probability measures with finite support by Y. Derriennic [Der75]. More generally, A. An-
cona [Anc87] proved that the Poisson boundary of a non-elementary Gromov-hyperbolic
group with respect to a finitely supported measure coincides with its Gromov boundary
endowed with the unique stationary measure. V. Kaimanovich later used the conditional
entropy criterion to generalize the latter result to hold for any nondegenerate probabil-
ity measure with finite entropy and finite first logarithmic moment [Kai94, Theorem 8],
[Kai00, Theorems 7.4 and 7.7]. Recently, this description was proved to hold for all nonde-
generate measures with finite entropy by K. Chawla, B. Forghani, J. Frisch and G. Tiozzo
[CFFT22, Theorem 1.1]. We note that the two latter results were new even in the case of
free groups.
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Wreath products. Given countable groups A and B, the wreath product A ≀B is the semidi-
rect product (

⊕
B A) ⋊ B where B acts on

⊕
B A by translations. The main tool used

to exhibit a nontrivial µ-boundary of random walks on wreath products is the stabiliza-
tion of lamp configurations: suppose that µ is a probability measure on A ≀ B such that
for P-almost every trajectory {(φn, Xn)}n≥0 of the µ-random walk on A ≀ B and for each
b ∈ B, there exists N ≥ 1 such that for every n ≥ N , we have φn(b) = φN (b). From this
one can deduce the existence of a µ-stationary probability measure ν on

∏
B A such that

(
∏
B A, ν) is a µ-boundary of A ≀B. A sufficient condition that guarantees the stabilization

of lamp configurations is that µ has a finite first moment with respect to a word metric on
A ≀ B and that the projection of µ to B defines a transient random walk [KV83, Section
6], [Kai91, Theorem 3.3], [KW07, Theorem 2.9], [Ers11, Lemma 1.1]. In particular for
B = Zd, d ≥ 1, if H(µ) < ∞ and µ satisfies the stabilization of lamp configurations, the
space (

∏
B A, ν) is the Poisson boundary of (A ≀B,µ) [Kai01, Theorem 3.6.6], [Ers11, The-

orem 1], [LP21, Theorems 1.1 & 5.1], [FS23, Theorem 1.3 & Corollary 1.4]. In contrast,
there are nondegenerate probability measures on A≀Zd, d ≥ 3, with an infinite first moment
and finite entropy such that the lamp configuration does not stabilize, and yet the Poisson
boundary is nontrivial [Kai83, Proposition 1.1], [Ers11, Section 6], [LP21, Section 5]. For
such probability measures, there are no known constructions of nontrivial µ-boundaries.

A natural boundary for Thompson’s group T . The µ-boundary (S1, ν) can be considered
as a “natural” candidate for the Poisson boundary of Thompson’s group T in the following
sense. A faithful action G↷ X of a group G on a locally compact Hausdorff perfect space
X by homeomorphisms is a Rubin action if for every open subset U ⊆ X and every x ∈ U ,
the closure of the orbit of x under the action of the subgroup {g ∈ G | g

∣∣
X\U = idX\U}

contains a neighborhood of x. A theorem by M. Rubin [Rub89, Corollary 3.5] states
that there exists a unique Rubin action up to G-equivariant homeomorphisms (see also
[BEM24] for a recent short proof). One can phrase this result as saying that a group
admits at most one “sufficiently rich” microsupported action on a compact space. Notice
that the action of Thompson’s group T on S1 is Rubin.

To the best of our knowledge, Thompson’s group T is the first example of a group such
that the Poisson boundary of a simple random walk is strictly larger than a “natural”
candidate µ-boundary. One can compare this result with the recent work of K. Chawla
and J. Frisch [CF25], from which it follows that on any non-abelian free group there
are probability measures with infinite entropy such that the Poisson boundary is not the
Gromov boundary of the free group.

1.3. Structure of the proofs. The proof of Theorem A follows similar steps to a method
used by A. Erschler in [Ers04] (see also Theorem 3.1) to show that h(µ) > 0 for a prob-
ability measure µ on a group G. This method consists of verifying that the sequence
(H(µ∗n))n≥0 grows linearly under the following condition: there exist p, c ∈ (0, 1) and
a ∈ supp(µ) \ {eG} such that for every n ∈ N, with probability at least p we can choose
elements b1, . . . , bk+1 ∈ G and times 1 ≤ i1 < i2 < · · · < ik ≤ n with k ≥ cn such that the
random walk wn at step n can be expressed in a unique way as

wn = b1ε1b2 · · · bkεkbk+1,
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where εj ∈ {a, eG} is the increment of the random walk at time ij for every 1 ≤ j ≤ k.
We state a conditional version of Erschler’s method in Theorem 3.2, which gives suffi-

cient conditions to ensure that the sequence of conditional entropies at time n with respect
to a given µ-boundary X grows linearly on n. Then, thanks to Kaimanovich’s conditional
entropy criterion and with the hypothesis of H(µ) < ∞, we conclude that the space X not
the Poisson boundary of (G,µ). The proof of Theorem A consists on applying Theorem
3.2 to the µ-boundary (S1, ν), and it follows the next steps.

• The main dynamical input that guarantees that we can apply Theorem 3.2 in
the context of Theorem A is Proposition 6.2, which asserts that for each suffi-
ciently small interval I ⊂ S1, there are linearly many intervals in the sequence
I, w1(I), . . . , wn(I) such that each of these intervals dominates all the ones preced-
ing it. Here, when I1, I2 ⊂ S1 are closed intervals we say that I1 dominates I2 if
they are either disjoint or if the interior of I1 contains I2.

• By the hypotheses on the action of G on S1, Proposition 2.11 ensures that there
exists a nontrivial element a ∈ G \ {eG} such that {x ∈ S1 : a(x) ̸= x} ⊆ I.

• The nondegeneracy assumption on µ guarantees that, up to replacing µ with a
convolution power µ∗s for some s ≥ 1, we may assume that a belongs to the
support of µ. From the above, we obtain c ∈ (0, 1) such that, in expectation, there
are at least k ≥ cn times 1 ≤ i1 < · · · < ik ≤ n such that wij−1(I) dominates
wil−1(I) and w−1

ij−1wij ∈ {a, eG} for all 1 ≤ l < j ≤ k.
• Given n ∈ N+, fix a trajectory w such that there are at least k ≤ cn times 1 ≤
i1 < · · · < ik ≤ n as in the previous step. Write wn = b1ε1b2 · · · bkεkbk+1 where the
ε1, . . . , εk ∈ {a, eG} are the jumps at times i1, . . . , ik. Then, Lemma 4.2 says that
whenever ε′

1, . . . , ε
′
k range over {a, eG}, the resulting elements b1ε

′
1b2 · · · bkε′

kbk+1

are pairwise distinct. From this, we verify the hypotheses of Theorem 3.2 and
finish the proof.

The proof of Theorem B in Section 8 is different and does not rely on entropy techniques.
Given a countable group G ≤ PAff+(S1), the set Br of breakpoints of elements of G is
countable, and there is a map C : G → RBr given by

Cg(x) := log
(
(g−1)′(x+)

)
− log

(
(g−1)′(x−)

)
for each x ∈ Br,

that records the discontinuities of the derivative of g ∈ G. The map C : G → RBr is an
additive cocycle for the natural action of G on RBr obtained from the action of G on Br
(see Equation (12)). The breakpoint boundary is defined as follows.

• Lemma 8.2 shows that the trajectory in Br of any breakpoint through the µ-
random walk is transient. This relies on a general comparison lemma for Markov
operators [BLP77].

• For P-almost every w = (wn)n≥0 the configurations Cwn converge pointwise to a
configuration C∞(w) ∈ RBr as n → ∞. This defines an associated hitting measure
ν̃ on RBr,

• We define another action of G on RBr, where for each g ∈ G and C ∈ RBr we
define (g · C)(x) = Cg(x) + C(g−1x) for every x ∈ Br. With respect to this action,
the space (RBr, ν̃) is a µ-boundary of G.
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Using the breakpoint boundary (RBr, ν̃), we find for each n ≥ 1 a bounded µ-harmonic
function fn : G → R and an element an ∈ G with small support such that there is a
constant K > 0 with |fn(an) − fn(eG)| > K for all n ∈ N. This cannot occur for bounded
harmonic functions obtained from (S1, ν).

We remark that the construction outlined in the first two steps of the proof was used by
B. Stankov to prove that, under the same moment condition on µ as in Theorem B, any
subgroup of Monod’s nonamenable group H(Z) of piecewise-PSL2(Z) homeomorphisms of
the line is either locally solvable or has nontrivial Poisson boundary [Sta21, Theorem 1.2].

1.4. Organization. In Section 2 we recall background material on random walks on
groups, Poisson boundaries, the conditional entropy criterion, and properties of groups
acting on the circle. In Section 3 we describe the method of A. Erschler (Theorem 3.1)
used to prove positivity of asymptotic entropy and our conditional version of it (Theorem
3.2). In Section 4 we prove Lemma 4.2, which gives a sufficient condition for us to verify
the hypotheses of Theorem 3.2. Next, in Section 5 we prove two quantitative statements
for random walks on S1 that are key to our results: Theorem 5.1 and Proposition 5.3.
Afterwards, in Section 6 we prove Proposition 6.2 that guarantees that in expectation
there will be linearly many dominating intervals, and use it in Section 7 to prove Theorem
A. Finally, in Section 8 we define the breakpoint boundary and prove Theorem B.

1.5. Acknowledgements. Martín Gilabert Vio acknowledges support from the ANR
project Gromeov (ANR-19-CE40-0007), and thanks Nicolás Matte Bon for useful con-
versations. Eduardo Silva is funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy EXC 2044 –390685587,
Mathematics Münster: Dynamics–Geometry–Structure.

2. Preliminaries

2.1. Random walks on groups and Poisson boundaries. Let µ be a probability
measure on a countable group G, and consider the probability measure P obtained as the
push-forward of the Bernoulli measure µN through the map

GN → GN

(g1, g2, g3, . . .) 7→ (w0, w1, w2, w3, . . .) := (eG, g1, g1g2, g1g2g3, . . .).

The space (GN,P) is called the space of sample paths or the space of trajectories of the
µ-random walk. We denote by σ : GN → GN the shift map σ((wn)n≥0) = (wn+1)n≥0.

The Poisson boundary of the µ-random walk on G was already defined in the introduc-
tion as the maximal µ-boundary of G. An alternative definition is the following.

Definition 2.1. Let G be a countable group, and let µ be a probability measure on G.
Two sample paths w,w′ ∈ GN are said to be equivalent if there exist i, j ≥ 0 such that
σi(w) = σj(w′). Consider the measurable hull associated with this equivalence relation,
that is, the σ-algebra formed by all measurable subsets of the space of trajectories (GN,P)
which are unions of the equivalence classes of ∼ up to P-null sets. The associated quotient
space is called the Poisson boundary of the random walk (G,µ).
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For further equivalent definitions of the Poisson boundary we refer to the articles [KV83],
[Kai00, Section 1] and the references therein. For an overview of the study of Poisson
boundaries and random walks on groups we refer to the surveys [Fur02,Ers10,Zhe23].

Denote by H∞(G,µ) the space of bounded harmonic functions, that is, of bounded
functions f : G → R such that f(g) =

∑
h∈G f(gh)µ(h) for all g ∈ G. The vector space

H∞(G,µ) becomes a Banach space by equipping it with the l∞ norm. For a probability
space (X, ν) endowed with a measurable action of G, we say that ν is µ-stationary if
ν = µ ∗ ν :=

∑
g∈G µ(g)g∗ν. In this case, for each F ∈ L∞(X, ν) one can define a µ-

harmonic function f ∈ H∞(G,µ) by

f(g) =
∫
X
F (x) dg∗ν =

∫
X
F (gx) dν, for each g ∈ G.

The map F ∈ L∞(X, ν) 7→ f ∈ H∞(G,µ) is called the Poisson transform associated with
(X, ν). When (X, ν) is the Poisson boundary of (G,µ), this map is the Poisson transform
defined in Equation (1) in the introduction.

We recall a standard result on the Poisson transform associated to a µ-boundary, which
will be used in Section 8 within the proof of Theorem B. Its proof goes back to the work
of H. Furstenberg (see the second paragraph on page 373 of [Fur63]) and R. Azencott
[Aze70, Proposition I.2], and can be found, for example, in [Gla76, Theorem 4.4].

Theorem 2.2. Let µ be a probability measure on a countable group G and let (X, ν) be
a µ-boundary of G. Then the Poisson transform associated with (X, ν) is an isometry
between L∞(X, ν) and a closed subspace of H∞(G,µ), and it is surjective if and only if
(X, ν) coincides with the Poisson boundary (∂µG, ν).

2.2. Conditional probabilities with respect to a µ-boundary. Let X = (X, ν) be
a µ-boundary of G. Using V. Rokhlin’s theory of measurable partitions of Lebesgue
spaces, the probability measure P can be disintegrated with respect to the boundary map
(GN,P) → (X, ν). That is, for ν-almost every ξ ∈ X there is a probability measure Pξ

supported on the fiber of ξ in GN such that P =
∫
X Pξ dν(ξ); see [Roh67, Section I.7] and

[Kai00, Section 3]. These conditional probability measures determine Markov chains on
G with transition probabilities

Pξ [wn+1 = g | wn = h] = P [wn+1 = g | wn = h] dg∗ν

dh∗ν
(ξ) = µ(h−1g) dg∗ν

dh∗ν
(ξ) (2)

for every g, h ∈ G and for ν-almost every ξ ∈ X; see Equation (20) in page 462 of [KV83],
or [Kai01, Theorem 1.3.4].

Lemma 2.3. Let µ be a probability measure on a countable group G and consider a µ-
boundary (X, ν) of G. Let J ⊆ X be a measurable subset and let a ∈ G be such that for
every x ∈ X\J we have a(x) = x. Then, for every g ∈ G and ν-almost every ξ ∈ X\g(J)
we have d(ga)∗ν

dg∗ν
(ξ) = 1. In particular, we have Pξ[wn+1 = ga | wn = g] = µ(a) for every

n ≥ 1.

Proof. Consider an arbitrary measurable subset A ⊆ X\g(J). Then g−1A ⊆ X\J , and
hence (ga)−1A = a−1g−1A = g−1A. From this, we have

g∗ν(A) = ν(g−1A) = P
[
ξ(w) ∈ g−1A

]
= P

[
ξ(w) ∈ (ga)−1A

]
= (ga)∗ν(A).
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Since A was arbitrary, the above implies the first statement of the lemma. The second
statement follows from Equation (2). □

2.3. Entropy. We consider countable partitions of the space of sample paths GN in the
definition of entropy below. The most important partitions for this are the following.

Definition 2.4. For every k ≥ 1, define the partition αk of the space of sample paths GN

where two trajectories w = (wn)n≥0, w′ = (w′
n)n≥0 ∈ GN belong to the same element of

αk if and only if wk = w′
k.

In other words, αk is the partition given by the element visited by the µ-random walk
at time k.

The Shannon entropy of a countable partition ρ of the space of sample paths GN with
respect to the probability measure P is defined as H(ρ) := −

∑
k≥1 P(ρk) logP(ρk). Note

that H(α1) = H(µ) is the Shannon entropy of the probability measure µ.

Definition 2.5. Let ρ = {ρk}k≥1 be a countable partition of the space of sample paths
GN and let X = (X, ν) be a µ-boundary of G. Consider the disintegration P =

∫
X Pξ dν(ξ)

with respect to the boundary map GN → X. We define for ν-almost every ξ ∈ X the
conditional entropy of ρ given ξ as Hξ(ρ) := −

∑
k≥1 Pξ(ρk) logPξ(ρk). Following [Roh67,

Section 5.1], let us define the mean conditional entropy of ρ over the µ-boundary X as
HX(ρ) :=

∫
X Hξ(ρ) dν(ξ).

We now formulate Kaimanovich’s conditional entropy criterion [Kai85, Theorem 2] in
terms of the mean conditional entropy, which is our main tool in the proof of Theorem A.

Theorem 2.6. Let G be a countable group, and let µ be a probability measure on G with
H(µ) < ∞. Consider a µ-boundary X of G. Then X is the Poisson boundary of (G,µ) if
and only if

h(µ | X) := lim
n→∞

HX(αn)
n

= 0.

For the equivalence between Theorem 2.6 and the original formulations of the condi-
tional entropy criterion in [Kai85, Theorem 2] and [Kai00, Theorem 4.6] we refer to the
explanation following Theorem 2.4 in [FS23].

In the proof of Theorem A it will be convenient to modify the step distribution µ in the
following two ways.

Lemma 2.7. Let µ be a nondegenerate probability measure on a countable group G. Con-
sider a probability measure µ̃ equal either to

• µlazy := 1
2µ+ 1

2δeG, or to
• a convolution µ∗s for some s ∈ N+.

Then H(µ) < ∞ if and only if H(µ̃) < ∞, and the Poisson boundary of (G,µ) is G-
equivariantly measurably isomorphic to the Poisson boundary of (G, µ̃).

Proof. The fact that H(µ) < ∞ if and only if H(µ̃) < ∞ follows from a direct computation.
To see that the Poisson boundaries do not change, note that µlazy (resp. µ∗s) can be
obtained from µ by stopping the random walk driven by µ along the stopping time τ =
inf{k ≥ 1 : gk ̸= 0} (resp. τ = s). The equality of the Poisson boundaries then follows
from [For15, Theorem 3.6.1]. □
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2.4. Groups acting on the circle. We refer to the monographs [Ghy01, Nav11] for
general references on groups that act on the circle. For an overview on group actions on
1-manifolds and related topics, we refer to the surveys [Nav18,Man23].

A continuous surjection π : S1 → S1 is said to have degree d ∈ N+ if any lift π̃ : R → R
of π satisfies π̃(x + d) = π̃(x) + d for all x ∈ R. We say that an action G ↷ϕ S1

is semiconjugate to G ↷ψ S1 if there exists a continuous surjection π : S1 → S1 with
π ◦ ϕ(g) = ψ(g) ◦ π for all g ∈ G, and such that π is locally nondecreasing and has degree
one.

Recall that we call an action G ↷ S1 minimal if all orbits are dense in S1. A folklore
theorem describing the topological dynamics of an arbitrary group action asserts that
unless G↷ S1 has a finite orbit, for most purposes it suffices to consider minimal actions.
For a proof, see [Ghy01, Proposition 5.6].

Theorem 2.8. Consider a group action G ↷ϕ S1 by orientation-preserving homeomor-
phisms. Then exactly one of the following statements is satisfied.

(i) There exists a finite orbit.
(ii) There exists a unique closed minimal set Λ, which is either S1 or a Cantor set.

In the latter case, by collapsing the connected componenents of S1 − Λ we can
semiconjugate ϕ to a minimal group action G↷ S1.

Consider a group action G↷ϕ S1 by orientation-preserving homeomorphisms. We say
that ϕ is locally proximal if there exists r > 0 such that for every interval I ⊂ S1 with
diam(I) < r and every ε > 0 there is g ∈ G with diam(g(I)) < ε. We say that ϕ is
proximal if the previous is true for all closed intervals I strictly contained in S1.

A complimentary description of the dynamics of a minimal group action on S1 is the
following theorem by G. Margulis [Mar00], which also follows from results of V. Antonov
[Ant84]. We refer to [Ghy01, Section 5.2] for a proof and further discussion.

Theorem 2.9. Consider a minimal group action G ↷ϕ S1 by orientation-preserving
homeomorphisms. Then exactly one of the following statements is satisfied.

(i) the action is conjugated to a minimal action by rotations, or
(ii) the action is proximal, or

(iii) the action is locally proximal and not proximal, and there exists d ∈ N, d ≥ 2 and
a continuous d-to-one covering π : S1 → S1 that intertwines ϕ with a proximal
action.

As a consequence we have a dichotomy for group actions G↷ S1: either
• the action preserves a probability measure on S1, and this happens exactly when

there is a finite G-orbit in S1 or when G ↷ S1 is semiconjugate to a minimal
action by rotations, or

• there exists d ∈ N+ and a continuous surjection π : S1 → S1 that intertwines
G ↷ S1 with a minimal and proximal action, such that the fibers π−1(x) are of
size d for Lebesgue-almost every x ∈ S1.

10
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Denote by Leb the Lebesgue measure on S1 ∼= R/Z. The next theorem, proved in
[DKN07, Appendice], shows how µ-boundaries arise in S1 for random walks on groups
acting proximally. Its proof may be found in [Nav11, Section 2.3.2].

Theorem 2.10. Consider a group action G ↷ S1 by orientation-preserving homeomor-
phisms with no invariant probability measure on S1, and let µ be a nondegenerate proba-
bility measure on G.

(i) There exists a unique µ-stationary probability measure ν on S1, which is atomless
and is supported on the minimal set of G.

(ii) If the action of G on S1 is proximal, there exists a random variable w ∈ GN 7→
ξ(w) ∈ S1 such that for P-almost every w = (wn)n≥0 we have

(wn)∗Leb −−−→
n→∞

δξ(w)

in the weak-∗ topology.
In particular, limn→∞(wn)∗ν = δξ(w) holds P-almost surely, and hence the circle (S1, ν)
is a µ-boundary of G.

Given g ∈ Homeo+(S1), denote by supp(g) the closure of the set {x ∈ S1 : g(x) ̸= x}.
Recall that an action G↷ S1 is topologically nonfree if there exists an element g ∈ G such
that supp(g) is nonempty and is not all of S1.

The proof of Theorem 2.9 shows that, whenever G is a group acting minimally and
proximally on S1, any open subset of S1 can be contracted into any nonempty open
subset of S1 under the action of G. For the convenience of the reader, we present here a
(probabilistic) proof of this result.

Proposition 2.11. Consider a minimal and proximal group action G↷ S1 by orientation-
preserving homeomorphisms. Then, for any pair of nonempty closed intervals I, J ⫋ S1

with nonempty interior there exists g ∈ G such that g(I) ⊆ J . If the action G ↷ S1 is
furthermore topologically nonfree, then for every nontrivial interval J ⊆ S1 there exists
a ∈ G \ {eG} such that supp(a) ⊆ J .

Proof. Let µ be a probability measure on G with supp(µ) = G and let I, J be nonempty
closed proper intervals of S1 with nonempty interior. Item (ii) of Theorem 2.10 states
that for P-almost every trajectory w ∈ GN and for any closed interval K ⊆ S1 that does
not contain ξ(w), we have limn→∞ diam(w−1

n (K)) = 0. The distribution ν of ξ(w) has
supp(ν) = S1, and therefore with positive probability ξ(w) /∈ I. From this, we obtain
limn→∞ diam(w−1

n (I)) = 0. However, since G ↷ S1 is minimal and µ is nondegenerate,
we have that P-almost surely for any x ∈ S1 the orbit {w−1

n (x)}n≥0 is dense in S1 [Fur02,
Theorem 3.3]. In particular, when x is the left endpoint of I, the above implies that w ∈ GN

and n ∈ N such that w−1
n (I) ⊂ J . This shows the first statement of the proposition.

Now let us suppose that the action of G on S1 is topologically nonfree then there is
b ∈ G \ {eG} such that supp(b) ̸= S1. Thus, we may choose a closed interval I ⫋ S1 that
contains supp(b). Using the first statement of the proposition, we can find g ∈ G such
that g(I) ⊆ J . Then, the element a = gbg−1 ∈ G \ {eG} satisfies supp(a) ⊂ J . This shows
the second statement of the proposition. □

11
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3. Lower bounds on entropy

In this section we prove a general criterion to show that mean conditional asymptotic
entropy is positive. It consists of a conditional version of the method used by A. Erschler
[Ers04] to show that the asymptotic entropy h(µ) of a random walk is positive.

3.1. Estimating asymptotic entropy. We start by recalling the method of [Ers04] to
estimate the asymptotic entropy of a random walk on a group. We do this exclusively
for expositional purposes since this result will not be used in the proofs of our theorems.
Nonetheless, we believe that understanding the statement of Theorem [Ers04, Theorem
2.1] (see Theorem 3.1 below) is useful for the understanding of its conditional version that
we state below (Theorem 3.2), and which is key for the proof of Theorem A.

Let us first recall some definitions from [Ers04] for a probability measure µ on a
countable group G. A collection of length n ∈ N is a tuple q = (x, i1, . . . , ik) where
0 < i1 < · · · < ik ≤ n are integers and

x = (x1, x2, . . . , xi1−1, xi1+1, . . . , xi2−1, xi2+1, . . . , xik−1, xik+1, . . . , xn)

is an (n − k)-tuple of elements of supp(µ). Notice that we index the elements of x by
integers in {1, . . . , n} \ {i1, . . . , ik}.

For each a, b ∈ supp(µ) and q = (x, i1, . . . , ik) a collection of length n, let us define
T a,b(q) to be the set of trajectories y = (y1, . . . , yn) ∈ Gn such that, after setting y0 = 1,
i0 = 0, we have

• for all l ∈ {1, . . . , n} \ {i1, . . . , ik} we have yl = yl−1xl, and
• for all l ∈ {i1, . . . , il}, we have yl = yl−1a or yl = yl−1b.

Thus, T a,b(q) is a set of 2k trajectories of the µ-random walk on G up to time n. We
say that T a,b(q) is satisfactory if all trajectories in T a,b(q) arrive at different elements of
G at time n. That is, if (y1, . . . , yn), (y′

1, . . . , y
′
n) are distinct trajectories in T a,b(q), then

yn ̸= y′
n.

For a trajectory y = (y1, . . . , yn), we define the jumps of y as gj = y−1
j−1yj ∈ supp(µ) for

all 1 ≤ j ≤ n, and we denote by

[y] = {w ∈ GN | wj = yj for all 1 ≤ j ≤ n}

the cylinder defined by y.

Theorem 3.1 ([Ers04]). Let µ be a probability measure on a countable group G with
H(µ) < ∞. Suppose that there exist p, c > 0 such that for each n ∈ N+ there is a set An
of collections of length n that verify the following conditions.

(i) For each q = (x, i1, . . . , ik) ∈ An we have k ≥ cn.
(ii) For each q ∈ An the set of trajectories T a,eG(q) is satisfactory.

(iii) For each q1, q2 ∈ An with q1 ̸= q2 we have [y1] ∩ [y2] = ∅ whenever y1 ∈ T a,eG(q1)
and y2 ∈ T a,eG(q2).

(iv) We have

P

 ⋃
q∈An

⋃
y∈Ta,eG (q)

[y]

 ≥ p.

Then h(µ) > 0.

12



THE POISSON BOUNDARY OF THOMPSON’S GROUP T IS NOT THE CIRCLE

To gain some intuition, here is a vague rephrasing of the assumptions. With positive
probability, the random walk trajectory is uniquely assigned a linear number of distin-
guished times along the trajectory together with fixed steps for all other time instants. At
any of these distinguished times, the choice between doing an increment of eG or of a will
lead the trajectory to different endpoints, regardless of which choices are made at later
distinguished instants.

3.2. Estimating conditional asymptotic entropy. We have the following conditional
version of Theorem 3.1, which has a similar structure to Theorem 3.1 but where an addi-
tional assumption is needed to handle the transition probabilities conditional to a bound-
ary point.

Theorem 3.2. Let µ be a probability measure on a countable group G with H(µ) < ∞ and
let X = (X, ν) be a µ-boundary of G. Consider an element a ∈ G\ {eG} and a measurable
subset J ⊂ X such that a(x) = x for each x ∈ X\J . Suppose that there exist p, c > 0, for
each n ∈ N+ a set Ξn ⊆ X of measure ν(Ξn) ≥ p, and for ν-almost every ξ ∈ Ξn a set
An,ξ of collections of length n that verify the following conditions.

(i) For each q = (x, i1, . . . , ik) ∈ An,ξ we have k ≥ cn.
(ii) For each q ∈ An,ξ the set of trajectories T a,eG(q) is satisfactory.

(iii) For each q1, q2 ∈ An,ξ with q1 ̸= q2 we have [y1]∩ [y2] = ∅ whenever y1 ∈ T a,eG(q1)
and y2 ∈ T a,eG(q2).

(iv) We have

Pξ
 ⋃
q∈An,ξ

⋃
y∈Ta,eG (q)

[y]

 ≥ p.

(v) For each q = (x, i1, . . . , ik) ∈ An,ξ and any (y1, · · · , yn) ∈ T a,eG(q) we have

y−1
ir−1(ξ) ̸∈ J for all 1 ≤ r ≤ k.

Then the asymptotic mean conditional entropy h(µ | X) = limn→∞HX(αn)/n is positive.

Proof. Note that Condition (iii) implies that all the sets An,ξ are nonempty, and hence
the definition of T a,eG(q) for a collection q and Condition (i) imply that a and eG belong
to the support of µ.

Let us fix the notation that we will use in the rest of the proof. Given a collection
q, denote by Qa,eG(q) ⊂ GN the union

⋃
y∈Ta,eG (q)[y]. Fix n ∈ N, and consider ξ ∈

X, a countable measurable partition η of GN and q a collection of length n such that
Pξ[Qa,eG(q)] > 0. Denote by Hξ(η, q) the entropy of the partition {P ∩Qa,eG(q) | P ∈ η}
of Qa,eG(q) with respect to the normalized probability measure Pξ/Pξ [Qa,eG(q)] restricted
to Qa,eG(q). If Pξ [Qa,eG(q)] = 0, we set Hξ(η, q) = 0.

Let αn be the partition of GN where two trajectories belong to the same atom of αn if
and only if they hit the same element of the group at time n. Then we have

HX(α) =
∫
X
Hξ(αn) dν(ξ) ≥

∫
X

∑
q∈An,ξ

Hξ(αn, q)Pξ [Qa,eG(q)] dν(ξ), (3)

where in the last inequality we used the fact that the Qa,eG(q) are disjoint, thanks to
Condition (iii).

13
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By Condition (ii), the partition {P ∩Qa,eG(q) | P ∈ αn} coincides with the partition

{ [y] : y ∈ T a,eG(q)}.

Hence, by Lemma 2.3 and Condition (v), we obtain that for any y ∈ T a,eG(q) with
increments g1, . . . , gn we have

Pξ [[y]] =
n∏
j=1

Pξ [wj = g1 · · · gj−1gj | wj−1 = g1 · · · gj−1]

=
k∏
r=1

µ(gir )
n∏
j=1

j ̸∈{is}s

Pξ [wj = g1 · · · gj−1gj | wj−1 = g1 · · · gj−1]

=
k∏
r=1

µ(gir )
µ(a) + µ(eG)

k∏
r=1

Pξ
[
wirw

−1
ir−1 ∈ {a, eG} | wir−1

] n∏
j=1

j ̸∈{is}s

Pξ
[
wjw

−1
j−1 = xj | wj−1

]

=
k∏
r=1

µ(gir )
µ(a) + µ(eG)P

ξ [Qa,eG(q)] .

We deduce that
Pξ[[y]]

Pξ [Qa,eG(q)] = µ(a)A(y)µ(eG)k−A(y)

(µ(a) + µ(eG))k ,

where A(y) ∈ N is the number of times that a appears in the sequence (gir )kr=1. Denote
by ρ the Bernoulli measure on {a, eG} giving weight µ(a)

µ(eG)+µ(a) to a and µ(eG)
µ(eG)+µ(a) to eG.

We conclude that Hξ(αn, q) = H(ρk(q)) = k(q)H(ρ). Since µ(a) and µ(eG) are positive,
the quantity H(ρ) is also positive.

We have thus from Condition (i) that Hξ(αn, q) = k(q)H(ρ) ≥ cnH(ρ), and therefore∫
Ξn

∑
q∈An,ξ

Hξ(αn, q)Pξ [Qa,eG(q)] dν(ξ) ≥ cnH(ρ)
∫

Ξn

Pξ
 ⋃
q∈An,ξ

Qa,eG(q)

dν(ξ)

≥ cnH(ρ)p2.

Finally, from Equation (3) we deduce that HX(α) ≥ cH(ρ)p2n for any n ∈ N. This shows
that h(µ | X) ≥ cH(ρ)p2 > 0 and finishes the proof. □

4. Good collections

Let µ be a nondegenerate probability measure on a countable subgroupG of Homeo+(S1)
acting minimally and proximally on S1. Let a ∈ G \ {eG} be an element such that
S1 \ supp(a) has nonempty interior, and let J ⫋ S1 be the smallest closed interval con-
taining supp(a).

Definition 4.1. Given two closed intervals I1, I2 ⊂ S1, we say that I1 dominates I2 if
they are disjoint or if the interior of I1 contains I2.

Lemma 4.2. Fix a collection q = (x, i1, . . . , ik) and consider two trajectories of length n
given by (y1, . . . , yn), (ỹ1, . . . , ỹn) ∈ T a,eG(q).

Then, for each 1 ≤ r ≤ k the following statements are equivalent.
(i) For all 0 ≤ l < ir − 1, the interval yir−1(J) dominates yl(J).

14
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(ii) For all 0 ≤ l < ir − 1, the interval ỹir−1(J) dominates ỹl(J).
Whenever these conditions are met, we have yir−1(J) = ỹir−1(J) for all 0 ≤ r ≤ k and
that q is satisfactory.

Proof. By symmetry, to prove the first statement it suffices to see that condition (i) implies
condition (ii). Denote by g1, . . . , gn and g̃1, . . . , g̃n the jumps of (y1, . . . , yn) and (ỹ1, . . . , ỹn)
respectively. We have ir−1 < ir − 1 for every 1 ≤ r ≤ k: indeed, if ir−1 = ir − 1 then
y−1
ir−2yir (J) = gir−1gir (J) = J so yir (J) = yir−2(J), contradicting condition (i).

Fix 1 ≤ r ≤ k. We will prove by backwards induction on l = ir − 2, ir − 3, . . . , 0 that

ỹ−1
l ỹir−1(J) dominates J and ỹ−1

l ỹir−1(J) = y−1
l yir−1(J). (Hl)

For the base case l = ir − 2, notice that since ir − 1 ̸= ir−1, we have ỹ−1
l ỹir−1 = gir−1 =

y−1
l yir−1, showing (Hir−2).

Now take 0 ≤ l < ir − 2 and assume (Hl+1).
If l = ik for some 0 ≤ k ≤ r, then (Hl+1) implies that ỹ−1

l+1yir−1(J) is either disjoint or
contains J , the support of g̃l. Hence

ỹ−1
l yir−1(J) = g̃lỹ

−1
l+1yir−1(J) = ỹ−1

l+1yir−1(J), (4)

and we deduce that

ỹ−1
l ỹir−1(J) = g̃lỹ

−1
l+1ỹir−1(J) dominates J = g̃l(J) (5)

since (Hl+1) holds. Moreover, by condition (i) the interval y−1
l+1yir−1(J) is either disjoint

or contains J , the support of gl, so

y−1
l yir−1(J) = gly

−1
l+1yir−1(J) = y−1

l+1yir−1(J)

too, which together with Equation (4) gives

y−1
l yir−1(J) = y−1

l+1yir−1(J) = ỹ−1
l+1yir−1(J) = ỹ−1

k yir−1(J).

The previous equation and Equation (5) give (Hl).
If l ̸= ik for all 0 ≤ k ≤ r instead, then

ỹ−1
l ỹir−1(J) = glỹ

−1
l+1ỹir−1(J) = gly

−1
l+1yir−1(J) = y−1

l yir−1(J)

and hence ỹ−1
l ỹir−1(J) = y−1

l yir−1(J) dominates J. This shows (Hl), finishing the induc-
tion and the proof of condition (ii).

To show the second statement, it remains to show that the collection q is satisfac-
tory if there exists a collection in T a,eG(q) satisfying condition (i). To show this, take
two distinct trajectories (y1, . . . , yn) and (ỹ1, . . . , ỹn) in T a,eG(q) with jumps gi1 , . . . , gir
and g̃i1 , . . . , g̃ir ∈ {a, eG} respectively at times i1, . . . , ik. For 1 ≤ r ≤ k write er =
g̃irg

−1
ir

∈ G. Denote by b1, . . . , bk ∈ G the blocks of q between the times i1, . . . , ik, so
yn = b1gi1b2gi2 · · · bkgikbk+1 and ỹn = b1g̃i1b2g̃i2 · · · bkg̃ikbk+1.

Write

ỹny
−1
n = b1g̃i1 · · · g̃ik−1bkekb

−1
k g−1

ik−1
· · · g−1

i1
b−1

1

= b1g̃i1 · · · g̃ik−2bk−1ek−1e
gik−1bk

k b−1
k−1g

−1
ik−2

· · · g−1
i1
b−1

1

= b1g̃i1 · · · g̃ik−2bk−1ek−1b
−1
k−1g

−1
ik−2

· · · g−1
i1
b−1

1 e
b1gi1 ···gik−1bk

k
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where we have used the notation uv = vuv−1. By iterating the previous calculation we
arrive at

ỹny
−1
n = eb1

1 e
b1gi1b2
2 · · · e

b1gi1 ···gik−2bk−1
k−1 e

b1gi1 ···gik−1bk

k = e
yi1−1
1 e

yi2−1
2 · · · e

yik−1−1
k−1 e

yik−1
k .

yir−1(J)

Figure 1. All red intervals yir′ −1(J) are dominated by the blue interval
yir−1(J).

Notice that the support of eyir−1
r is yir−1(supp(a)). Choose 1 ≤ r ≤ k such that er ̸= 1

and for all 1 ≤ r′ ≤ k with er′ ̸= 1 either yir′ −1(J) is strictly contained in yir−1(J) or is
disjoint from yir−1(J). Then ỹny

−1
n coincides in a neighborhood of ∂yir−1(J) with e

yir−1
r

(see Figure 1). This neighborhood must intersect yir−1(supp(a)) because J is the smallest
subinterval containing supp(a), and hence ỹny−1

n is nontrivial near ∂yir−1(J). We conclude
that q is satisfactory. □

Definition 4.3. Given ξ ∈ S1, we say that q = (x, i1, . . . , ik) is ξ-good if
• for all trajectories (y1, . . . , yn) ∈ T a,eG(q), every 1 ≤ r ≤ k, we have

yir−1(J) dominates yl(J) for all 0 ≤ l < ir − 1 and y−1
ir

(ξ) ̸∈ J, and

• the set of indices i1, . . . , ik is maximal among the subsets of {1, . . . , n} satisfying
the property above.

Equivalently, by Lemma 4.2 the collection q is ξ-good if there exists at least one trajec-
tory in T a,eG(q) that verifies the previous conditions.

Lemma 4.4. For every n ∈ N and ξ ∈ S1 the set of trajectories is partitioned as

GN =
⊔

q a ξ-good
collection of length n

⊔
y∈Ta,eG (q)

[y].

Proof. Given any trajectory w = (wn)n≥0 there is exactly one ξ-good collection q such
that w is contained in

⋃
y∈Ta,eG (q)[y], which is defined by setting q = (x, i1, . . . , ik) where

the ir are exactly the indices such that
• for all 0 ≤ l < ir − 1 the interval wir−1(J) dominates wl(J) and
• w−1

ir
(ξ) ̸∈ J ,

and x is obtained from w by keeping the coordinates in {1, . . . , n} \ {i1, . . . , ik}. □
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Note that whenever An,ξ is composed of ξ-good collections, Lemma 4.2 implies that
conditions (ii) and (v) in Theorem 3.2 are immediately satisfied. Moreover, the previous
lemma ensures that condition (iii) in the theorem is also verified. We record this as a
proposition, which we will use to verify some of the hypotheses of Theorem 3.2.

Proposition 4.5. Let µ be a nondegenerate probability measure with finite entropy on a
countable subgroup G of Homeo+(S1) acting minimally and proximally on S1. Consider
the µ-boundary (S1, ν) of G. Let a ∈ G \ {eG} be an element such that both supp(a)
and S1 \ supp(a) have nonempty interior, and let J ⫋ S1 be the smallest closed interval
containing supp(a). Let p > 0 and consider for each n ∈ N+ a subset Ξn ⊆ S1 with
ν(Ξn) ≥ p, and for ν-almost every ξ ∈ Ξn a set An,ξ of collections of length n. If for every
n ∈ N and ξ ∈ Ξn the set An,ξ is composed of ξ-good collections, then Conditions (ii), (iii)
and (v) in Theorem 3.2 are satisfied.

5. Exponential contraction in mean

The purpose of this section is to prove Theorem 5.2 and Proposition 5.3 below, which
are the remaining statements on random walks on Homeo+(S1) that we need to prove
Theorem A.

The following theorem has already appeared in the literature in several guises, see
[Aou11, Proposition 4.15] for probability measures satisfying an exponential moment con-
dition on linear groups acting on projective spaces and [GS23, Theorem 1.3] or [GK21,
Proposition 4.18] for finitely supported measures on Diff1

+(S1). The most general version
follows from the recent work of I. Choi [Cho25], and does not require any assumption on
the smoothness of the elements of G nor on the tail decay of the probability measure µ.

Theorem 5.1 ([Cho25]). Let µ be a nondegenerate probability measure on a countable
subgroup of Homeo+(S1) acting minimally and proximally on S1. Then there exists λ > 0
and N ∈ N such that for all n ≥ N we have

sup
x,y∈S1

E
[
d(w−1

n (x), w−1
n (y))

]
≤ e−λn.

Proof. It follows from [Cho25, Theorem C] that there exists λ > 1 such that for all x, y ∈ S1

and n ∈ N+ we have

P
[
d(w−1

n (x), w−1
n (y)) ≤ e−λn

]
≥ 1 − e−λn/λ.

From this, we obtain

E
[
d(w−1

n (x), w−1
n (y))

]
≤ (1 + 1/λ)e−λn,

which implies the desired inequality. □

The proof of the following corollary uses Theorem 5.1 and follows steps similar to the
proof of [Aou11, Theorem 4.16].

Corollary 5.2 (Exponential convergence in mean to the boundary point). Let µ be a
nondegenerate probability measure on a countable subgroup of Homeo+(S1) acting mini-
mally and proximally on S1. Denote by ξ : GN → S1 the boundary map. Then there exist

17
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λ > 0 and N ∈ N such that for all n ≥ N we have

sup
x∈S1

E[d(wn(x), ξ(w))] ≤ e−λn.

Proof. Let n, k ∈ N+ with n < k and let x, y ∈ S1. We have that

E [d (wn(x), ξ(w))] ≤ E [d (wn(x), wk(y))] + E [d ((wk(y), ξ(w))] .

Define a probability measure µ on G as µ(g) = µ(g−1) for g ∈ G. Theorem 5.1 applied to
the random walk driven by µ gives a λ > 0 such that

sup
u,v∈S1

E [d (gn · · · g0(u), gn · · · g0(v))] ≤ e−λn

for all large enough n ∈ N+. In particular, we deduce that

E [d (wn(x), wk(y))] =
∑
γ∈G

E [d (wn(x), wnγ(y))]µ∗(k−n)(γ)

≤ sup
u,v∈S1

E [d (wn(u), wn(v))]

= sup
u,v∈S1

E [d (gn · · · g0(u), gn · · · g0(v))] ≤ e−λn,

and hence conclude that

sup
x∈S1

E [d (wn(x), ξ(w))] ≤ e−λn + E [d (wk(y), ξ(w))] .

By integrating the above inequality with respect to ν we conclude that

sup
x∈S1

E [d (wn(x), ξ(w))] ≤ e−λn + E
[∫
S1
d (wk(y), ξ(w)) dν(y)

]
= e−λn + E

[∫
S1
d(y, ξ(w)) dwkν(y)

]
.

But the dominated convergence theorem and Theorem 2.10, (ii) imply that

E
[∫
S1
d(y, ξ(w)) dwkν(y)

]
−−−→
k→∞

E
[∫
S1
d(y, ξ(w)) dδξ(w)(y)

]
= 0,

so the desired conclusion holds. □

For a probability measure µ on G, we denote by µ the reflected probability measure on
G, defined by µ(g) = µ(g−1) for each g ∈ G.

Proposition 5.3. Let µ be a nondegenerate probability measure on a countable subgroup
of Homeo+(S1) acting minimally and proximally on S1. Denote by ξ : GN → S1 the
boundary map. Consider the reflected probability measure µ on G, and let us denote by
ν the unique µ-stationary probability measure on S1. Then for any nonempty interval
J ⊆ S1 there exists N ∈ N+ such that for all n ≥ N ,

E [|{1 ≤ k ≤ n : ξ(w) ∈ wk(J)}|] ≤ 2ν(J)n.

Proof. Notice that ν(J) > 0 because J is nonempty and ν has full support. Since

E [ |1 ≤ k ≤ n : ξ(w) ∈ wk(J)| ] =
n∑
k=0

P [ξ(w) ∈ wk(J)] ,

18
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it suffices to prove that P [ξ ∈ wn(J))] < 3ν(J)/2 for all large enough n ∈ N+. Recall that
we write σ : GN → GN for the shift map on the space of sample paths. Since the boundary
map ξ : (GN,P) → (S1, ν) is σ-invariant, we have

P [ξ(w) ∈ wn(J)] = P [ξ(σnw) ∈ wn(J)] =
∑
g∈G

P [ξ(σnw) ∈ wn(J) | wn = g]µ∗n(g)

=
∑
g∈G

P [ξ(σnw) ∈ g(J) | wn = g]µ∗n(g)

=
∑
g∈G

P [ξ(w) ∈ g(J)]µ∗n(g)

=
∑
g∈G

ν(g(J))µ∗n(g). (6)

If µ were to be symmetric, then ν would also be µ-stationary and we would conclude that
P [ξ ∈ wn(J)] = ν(J), which implies the desired inequality. In the general case, when µ

may not be symmetric, we proceed as follows. For every w = (wn)n≥0 ∈ GN denote by
ξ(w) ∈ S1 the boundary point for the random walk {g−1

1 · · · g−1
n }n≥0, so that P-almost

surely
(g−1

1 · · · g−1
n )ν −−−→

n→∞
δξ(w)

in the weak-∗ topology.
Since ν has support equal to S1, whenever ξ(w) ̸∈ J we have diam(gn · · · g1(J)) −−−→

n→∞
0.

From this together with the fact that ν is nonatomic, we obtain

ν(gn · · · g1(J)) −−−→
n→∞

0. (7)

Next, we have that∑
g∈G

ν(g(J))µ∗n(g) =
∫
GN
ν(gn · · · g1(J)) dP(w)

≤ P
[
ξ(w) ∈ J

]
+
∫
ξ ̸∈J

ν(gn · · · g1(J)) dP(w)

= ν(J) +
∫
ξ ̸∈J

ν(gn · · · g1(J)) dP(w). (8)

The convergence of Equation (7) together with the dominated convergence theorem show
that ∫

ξ ̸∈J
ν(gn · · · g1(J)) dP(w) −−−→

n→∞
0,

so the right side of Equation (8) is at most 3ν(J)/2 for large enough n ∈ N. Together
with Equation (6), this proves the desired statement. □

6. There is a linear number of dominating intervals along the walk

As before, let µ be a probability measure on a countable subgroup of Homeo+(S1)
acting minimally and proximally on S1. Recall that we denote by (wn)n≥0 a sample path
of the µ-random walk on G.

Definition 6.1. For every n, s ∈ N+ with 1 < s < n and each proper interval J ⊆ S1,
let us define the random variable ZJn,s ∈ N as the number of times 1 ≤ k ≤ ⌈n/s⌉ such
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that the interval wks(J) dominates wjs(J) for all 0 ≤ j ≤ k − 1. That is, we define
ZJn,s =

∑⌈n/s⌉
k=1 1Bk

, where

Bk = {wks(J) dominates wjs(J) for all 0 ≤ j ≤ k − 1}

for every 1 ≤ k ≤ ⌈n/s⌉. We call the parameter s ∈ N+ the sparsity.

For every l ∈ N+ we denote by Pµ∗l the probability measure on GN given by the
distribution of the trajectories of the µ∗l-random walk on G. Denote by Eµ∗l the associated
expectation. The following proposition guarantees that in expectation there is a linear
number of dominated intervals along the trajectory of the random walk.

Proposition 6.2. Let µ be a probability measure on a countable subgroup of Homeo+(S1)
acting minimally and proximally on S1, and denote by ν the unique µ-stationary probability
measure on S1. Let I ⊆ S1 be a closed interval such that ν(I) < 1/2 and let J ⊆ I. Then
there exist s,N ∈ N+ and 0 < c < 1 such that for all l ∈ N+ and every n ≥ N we have
Eµ∗l [ZJn,s] ≥ cn.

The proof of this proposition will follow from the next two lemmas.

Lemma 6.3. Consider the same hypotheses as in Proposition 6.2. Then for any s, l ∈ N+

there is N ≥ 1 such that for all n ≥ N we have

Eµ∗l [ZJn,s] ≥ n

2sPµ∗l [wjs(J) dominates J for all j ≥ 1] .

Proof. For l ∈ N+ we have

Eµ∗l [ZJn,s] =
⌈n/s⌉∑
k=1

Pµ∗l [wks(J) dominates wjs(J) for all 0 ≤ j ≤ k − 1]

=
⌈n/s⌉∑
k=1

Pµ∗l [gjs+1gjs+2 · · · gks(J) dominates J for all 0 ≤ j ≤ k − 1]

=
⌈n/s⌉∑
k=1

Pµ∗l

[
g1g2 · · · g(k−j)s(J) dominates J for all 0 ≤ j ≤ k − 1

]

=
⌈n/s⌉∑
k=1

Pµ∗l [wjs(J) dominates J for all 1 ≤ j ≤ k] ,

where the second to last equality follows from the fact that the increments (gj)j≥1 are
independent and identically distributed.

For every k = 1, 2, . . . , ⌈n/s⌉ let us denote by Dk the event where wjs(J) dominates J
for all 1 ≤ j ≤ k. Note that Dk+1 ⊆ Dk for each k = 1, 2, . . . , ⌈n/s⌉ − 1, and therefore we
have that

Pµ∗l [Dk] −−−→
k→∞

Pµ∗l [wjs(J) dominates J for all j ≥ 1] .

From this, we also obtain⌈
n

s

⌉−1 ⌈n/s⌉∑
k=1

Pµ∗l [Dk] −−−→
n→∞

Pµ∗l [wjs(J) dominates J for all j ≥ 1] ,

which implies the desired inequality. □
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Lemma 6.4. Consider the same hypotheses as in Proposition 6.2. Then there exists a
sparsity s ∈ N+ such that for all l ∈ N+ and every interval J ⊆ I we have

Pµ∗l [wjs(J) dominates J for all j ≥ 1] ≥ 1/24.

Proof. Note that the probability measure ν on S1, which is the unique µ-stationary prob-
ability measure on S1, is also the unique µ∗l-stationary measure on S1 for each l ≥ 1.
Since ν is nonatomic we have that

ν({ξ ∈ S1 : 0 < d(ξ, I) < ε}) −−−→
ε→0

0.

We see from this that there exists ε > 0, that does not depend on l, such that

ν({ξ ∈ S1 : d(ξ, I) > ε}) ≥ (1 − ν(I))/2.

Let us define Ξ = {ξ ∈ S1 : d(ξ, I) > ε}, and recall that we are supposing ν(I) < 1/2.
Together with the above, this implies that ν(Ξ) > 1/4.

Let λ > 0 be such that the conclusion of Corollary 5.2 is verified for P = Pµ∗l , and
choose a sparsity s such that e−λs/2 < min{ε/8, 1/5}. Since

sup
x∈S1

Eµ∗l [d (wn(x), ξ(w))] = sup
x∈S1

E [d(wln(x), ξ(w))] ≤ e−λln ≤ e−λn (9)

for all n ∈ N+, we can choose λ and s uniform in l.
Denote by l (resp. r) the left (resp. right) endpoint of the interval J , so that we have

J = [l, r]. We claim that if the interval wjs(J) does not dominate J for some j ≥ 1, then
for each ξ ∈ Ξ we have max{d(wjs(l), ξ), d(wjs(r), ξ)} ≥ ε. Indeed, if wjs(J) does not
dominate J , then either wjs(J) ⊆ J or {wjs(l), wjs(r)} ∩ J ̸= ∅. In both cases we obtain
that {wjs(l), wjs(r)} ∩ I ̸= ∅, and hence there is an endpoint of the interval wjs(J) at
distance at least ε from Ξ (see Figure 2).

Ξ

I

J

wjs(J)

Figure 2. The interval wjs(J) does not dominate J .

For each j ≥ 1 let us denote by Aj the event where wjs(J) does not dominate J . By
the above paragraph, for every j ≥ 1 we have

ν(Ξ)Pµ∗l [Aj | ξ ∈ Ξ] ≤ ν(Ξ)Pµ∗l [max{d(wjs(l), ξ), d(wjs(r), ξ)} > ε | ξ ∈ Ξ]

≤ Pµ∗l [max{d(wjs(l), ξ), d(wjs(r), ξ)} > ε] ≤ e−λjs 2
ε
,

where in the last inequality we used Equation (9) together with the Markov inequality.

21



THE POISSON BOUNDARY OF THOMPSON’S GROUP T IS NOT THE CIRCLE

Since e−λs/2 < εν(Ξ)/2, we see that

Pµ∗l [Aj | ξ ∈ Ξ] ≤ e−λjs 2
εν(Ξ) ≤ e−λs/2e−λ(j−1)s.

Hence

Pµ∗l

⋃
j≥1

Aj | ξ ∈ Ξ

 ≤ e−λs/2∑
j≥1

e−λ(j−1)s = e−λs/2

1 − e−λs

which is at most 5/24 since e−λs/2 ≤ 1/5 and e−λs ≤ 1/25. Finally, we obtain

Pµ∗l

⋃
j≥1

Aj

 = Pµ∗l

⋃
j≥1

Aj | ξ(w) ∈ Ξ

Pµ∗l [ξ(w) ∈ Ξ] +

+ Pµ∗l

⋃
j≥1

Aj | ξ(w) ̸∈ Ξ

Pµ∗l [ξ(w) ̸∈ Ξ]

≤ 5
24 + ν(S1 \ Ξ) ≤ 5

24 + 3
4 = 23

24 ,

which proves the lemma. □

Proof of Proposition 6.2. Lemma 6.3 together with Lemma 6.4 imply the statement of
Proposition 6.2 by setting c = 1

48s . □

7. Proof of Theorem A

We consider, as in the statement of Theorem A, a countable group G acting proximally,
minimally, and topologically nonfreely on S1 and µ a nondegenerate probability measure
on G. By Lemma 2.7, we may assume that µ(eG) > 0.

We denote by ν the unique µ-stationary measure on S1, and we denote by ν the unique
µ stationary measure where µ is the nondegenerate probability measure on G given by
µ(g) = µ(g−1) for each g ∈ G.

Fix an interval I ⊂ S1 such that ν(I) < 1/2. Using Proposition 6.2 we can find
0 < c < 1 and s ∈ N+ such that Eµ∗l [ZJn,s] ≥ cn for all l ∈ N+, every interval J ⊆ I and
all sufficiently large n ∈ N+. Since

Eµ∗sl [ZJn,1] = Eµ∗l [ZJns,s] ≥ cns ≥ cn,

for all l ∈ N+ and sufficiently large n ∈ N+, we can replace once and for all µ by µ∗sl with
some large l ∈ N+ (and drop the subscript µ∗l from P,E) so that

• supp(µ) contains an element a ∈ G\{eG} with supp(a) ⊆ I, such that the smallest
subinterval J ⊆ I that contains supp(a) satisfies ν(J) < c/8, and

• E[ZJn,1] ≥ cn for all large n ∈ N+.
Note that the stationary measures ν, ν on S1 do not change after doing this replacement.

Lemma 7.1. For every n ∈ N+, denote by Wn ∈ N+ the random variable that counts the
number of times 1 ≤ k ≤ n such that

• the interval wk(J) dominates wj(J) for all 0 ≤ j ≤ k − 1,
• w−1

k (ξ(w)) does not belong to J , and
• the increment gk+1 is in {a, eG}.

Then there exists 0 < c′ < 1 such that E[Wn] ≥ c′n for sufficiently large n ∈ N+.
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Proof. For every n ∈ N+, denote by W̃n ∈ N the random variable that counts the number
of times 1 ≤ k ≤ n such that

• the interval wk(J) dominates wj(J) for all 0 ≤ j ≤ k − 1, and
• w−1

k (ξ(w)) does not belong to J .
By Corollary 5.3, we see that

E
[∣∣∣{1 ≤ k ≤ n : w−1

k (ξ(w)) ̸∈ J
}∣∣∣]

n
≥ 1 − 2ν(J) ≥ 1 − c

4 , (10)

for all sufficiently large n ∈ N+. The bound E[ZJn,1] ≥ cn and Equation (10) imply that
there exists c′′ ∈ (0, 1) such that E[W̃n] ≥ c′′n for all sufficiently large n ∈ N+.

Notice that
W̃n =

n∑
k=1

1
C̃k

and Wn =
n∑
k=1

1Ck
,

where

C̃k = {wk(J) dominates wj(J) for 0 ≤ j ≤ k − 1, and w−1
k (ξ(w)) ̸∈ J}

and
Ck = C̃k ∩ {gk+1 ∈ {a, eG}}

for every 1 ≤ k ≤ n. Since the event {gk+1 ∈ {a, eG}} is independent from C̃k under P,
we deduce that

E[Wn] = (µ(a) + µ(eG))E[W̃n] ≥ (µ(a) + µ(eG))c′′n

for all sufficiently large n ∈ N+. The statement from the lemma then holds for the value
c′ = (µ(a) + µ(eG))c′′. □

We recall the following basic fact about random variables, that we will use below.

Lemma 7.2. Let 0 ≤ X ≤ 1 be a real-valued random variable with mean E[X] > λ > 0.
Then

P[X > λ/2] ≥ λ/2.

Proof. The statement follows from the inequality

λ < E[X] ≤ λ/2P[X ≤ λ/2] + P[X > λ/2] ≤ λ/2 + P[X > λ/2]. □

Finally, we present the proof of Theorem A.

Proof of Theorem A. Just as in the statement of Lemma 7.1, for every n ≥ 1 let us denote
by Wn ∈ N+ the random variable that counts the number of times 1 ≤ k ≤ n such that

• the interval wk(J) dominates wj(J) for all 0 ≤ j ≤ k − 1,
• w−1

k (ξ(w)) does not belong to J , and
• the increment gk+1 is in {a, eG}.

For ν-almost every ξ ∈ S1 and n ∈ N+ we apply Lemma 7.2 to the random variable

w ∈ (GN,Pξ) 7→ Wn

n
∈ [0, 1],

and deduce that
Pξ
[
Wn

n
>

Eξ[Wn]
2n

]
≥ Eξ[Wn]

2n .
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Now consider the random variable

ξ ∈ (S1, ν) 7→ Eξ[Wn]
n

∈ [0, 1]

and apply Lemmas 7.1 and 7.2 to see that ν(Ξn) > c′/2, where

Ξn :=
{
ξ ∈ S1 : Eξ[Wn]

n
≥ c′

2

}
.

From this, we conclude that

Pξ
[
Wn

n
>
c′

2

]
≥ c′

2 (11)

for ν-almost every ξ ∈ Ξn.
For every n ∈ N+ and ν-almost every ξ ∈ Ξn, consider the set of infinite trajectories

w = (wn)n≥0 ∈ GN such that Wn(w)/n > c′/2. To each such sample path w we associate
a maximal set of indices 1 ≤ i1 < · · · < ik ≤ n of size k = k(w) such that for every
1 ≤ r ≤ k we have that

• the interval wir−1(J) dominates wl(J) for all 0 ≤ l < ir − 1, and
• gir ∈ {a, eG} and w−1

ir
(ξ) ̸∈ J .

Define x as the (n − k)-tuple consisting of all increments of w at times instants in
{1, . . . , n} \ {i1, . . . , ik}. By definition, the collection q(w) = (x, i1, . . . , ik) is ξ-good,
and we have k(w) ≥ Wn > c′n/2.

Denote by An,ξ the set of collections obtained in this way. We claim that the collec-
tions An,ξ satisfy the conditions of Theorem 3.2. Indeed, since An,ξ is composed of ξ-good
collections, thanks to Proposition 4.5 we have that Conditions (ii), (iii) and (v) are sat-
isfied. Moreover, for every q = (x, i1, . . . , ik) ∈ An,ξ we have k ≥ c′n/2 by the previous
paragraph. Therefore, Condition (i) is also satisfied. Finally, from Inequality (11) we get
that

Pξ
 ⋃
q∈An,ξ

⋃
y∈Ta,eG (q)

[y]

 ≥ c′/2,

so Condition (iv) also holds. The hypotheses of Theorem 3.2 are satisfied, and hence we
have finished the proof of Theorem A. □

8. Proof of Theorem B

Recall that the group PAff+(S1) of piecewise affine orientation-preserving homeomor-
phisms of S1 ∼= R/Z is the group of all g ∈ Homeo+(S1) such that there exists a finite
subset D ⊂ S1 such that g restricted to every connected component C of S1 \ D is of
the form g(x) = ax + b for some a > 0 and b ∈ R/Z. Thus, for every g ∈ PAff+(S1) the
derivative g′ is defined outside a finite set and is locally constant. The points of S1 where
the derivative of g is not defined are called the breakpoints of g.

In this section G is a countable subgroup of PAff+(S1) acting minimally, proximally
and topologically nonfreely on S1, and µ is a nondegenerate probability measure on G

such that
∑
g∈G µ(g)|Cg| is finite, where |Cg| is the number of breakpoints of g ∈ G. We

denote by Br ⊂ S1 the countable set of breakpoints of elements in G.
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8.1. The breakpoint boundary. In this subsection we adapt V. Kaimanovich’s con-
struction of a µ-boundary of Thompson’s group F [Kai17] to the context above. The ar-
guments are analogous to those that appear in [Kai17] and their extension by B. Stankov
[Sta21] for probability measures with a finite first moment.

Given an element g ∈ G, define a finitely supported function Cg : Br → R by setting

Cg(x) = log
(
(g−1)′(x+)

)
− log

(
(g−1)′(x−)

)
for x ∈ Br, where (g−1)′(x+) (resp. (g−1)′(x−) is the left (resp. right) derivative of g−1

at x. That is, Cg(x) is the derivative jump of g−1 at x. This definition differs slightly
from those used in [Kai17, Sta21], but this difference is necessary since we consider right
random walks and the left action of G on S1.

Denote the set of all (not necessarily finitely supported) functions Br → R by RBr.
Define a left action of G on RBr by

(g, C) 7→
(
SgC : x ∈ Br 7→ C(g−1(x))

)
.

By the chain rule, we have

Cgh(x) = log
(
(h−1)′(g−1(x)+)

)
−log

(
(h−1)′(g−1(x)−)

)
+log

(
(g−1)′(x+)

)
−log

(
(g−1)′(x−)

)
for all g, h ∈ G and x ∈ Br, so that

Cgh = Cg + SgCh. (12)

Let us define a second left action of G on RBr by (g, C) 7→ Cg +SgC, so we have Cgh = g.Ch
for all g, h ∈ G. This is the action on RBr that will define a nontrivial boundary for G.

To prove the transience of the random walks on G-orbits of elements of Br we emulate
[Kai17, Theorem 25], for which we need a comparison lemma for Markov operators due
to [BLP77]; see also the proposition at the end of Section 4 in [Var83] for a more general
version of this result.

Proposition 8.1. Let P1(·, ·), P2(·, ·) be doubly stochastic kernels on a countable set X
such that P2(·, ·) is symmetric and there exists ε > 0 such that

P1(x, y) ≥ εP2(x, y) for all x, y ∈ X.

Then the Markov process determined by P1 and started at x ∈ X is transient if the Markov
process determined by P2 and started at x ∈ X is transient.

Lemma 8.2. For every x ∈ S1 the µ-random walk on OrbG(x) started at x is transient.

Proof. Fix x ∈ S1. Since G acts proximally and minimally, using Proposition 2.11 we can
find f, g ∈ G such that there are disjoint intervals I1, I2, J1, J2 ⊂ S1 with x ̸∈ I1∪I2∪J1∪J2

and
f(S1 \ I2) ⊆ I1, g(S1 \ J2) ⊆ J1.

By Klein’s ping-pong lemma, f and g generate a free subgroup of G and ⟨f, g⟩ acts
freely on Orb⟨f,g⟩(x). Let µ̃ be the uniform measure on {f, f−1, g, g−1}. The µ̃-random
walk on Orb⟨f,g⟩(x) starting at x is transient since it corresponds to a simple random walk
on an infinite tree of valence 4. Let n ∈ N be such that f, g ∈ supp(µ∗n). Then there exists
ε > 0 such that µ∗n ≥ εµ̃, and we obtain from Proposition 8.1 that the µ∗n-random walk
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on OrbG(x) started at x is transient. We conclude that the µ-random walk on OrbG(x)
starting at x is transient too. □

The following lemma is reminiscent of the stabilization of lamp configurations for ran-
dom walks on wreath products; see the references in Subsection 1.2 and also [Sta21, Lemma
7.2]. This is the only point in the construction of the breakpoint boundary where the mo-
ment condition on µ is used. For C ∈ RBr we denote supp(C) = {x ∈ Br | C(x) ̸= 0}.

Lemma 8.3. Suppose that
∑
g∈G µ(g)|Cg| < ∞. Then P-almost surely and every x ∈ Br

there is N ≥ 1 such that Cwn(x) = Cwn+1(x) for each n ≥ N . Hence, the configurations
(Cwn)n≥0 converge pointwise to a map C∞(w) ∈ RBr.

Proof. The equation
Cwn+1 = Cwn + SwnCgn+1

implies that, for every x ∈ Br, Cwn+1(x) = Cwn(x) if and only if w−1
n (x) /∈ supp(Cgn+1).

Thus, the configurations Cwn stabilize as n → ∞ to some C∞(w) ∈ RBr if for every x ∈ Br,
we have w−1

n (x) ∈ supp(Cgn+1) for only finitely many n ∈ N. By the Borel-Cantelli lemma,
this holds whenever

∑
n≥0

P
[
w−1
n (x) ∈ Cgn+1

]
=
∑
n≥0

∑
g∈G

µ(g)P
[
w−1
n (x) ∈ Cg

]
=
∑
n≥0

∑
g∈G

∑
y∈Cg

µ(g)P
[
w−1
n (x) = y

]
is finite for all x ∈ Br.

The µ-random walk (wn)n≥0 on G induces a Markov chain on Br with transition
probabilities p(x, y) = P

[
w−1

1 (x) = y
]
. Denote by p its reflected kernel, defined by

p(x, y) = p(y, x) for all x, y ∈ Br. Notice that for x, y ∈ Br, the quantity
∑
n≥0 p

∗n(y, x)
is the expected number of visits to x of the Markov chain defined by p and starting at y.
Hence ∑

n≥0
p∗n(y, x) = q(y, x)

∑
n≥0

p∗n(x, x)

where q(y, x) is the probability that the Markov chain defined by p and started at y hits
x. In particular, ∑

n≥0
p∗n(y, x) ≤

∑
n≥0

p∗n(x, x),

so an upper bound for
∑
n≥0 P

[
w−1
n (x) ∈ Cgn+1

]
is given by

∑
g∈G

∑
y∈Cg

µ(g)

∑
n≥0

p∗n(x, x)

 =

∑
n≥0

p∗n(x, x)

∑
g∈G

µ(g)|Cg|

 .
By Lemma 8.2, the sum

∑
n≥0 p

∗n(x, x) is finite for any x ∈ Br, and by hypothesis the
term

∑
g∈G µ(g)|Cg| is also finite. This proves the lemma. □

Denote by ν̃ the pushforward measure of P through C∞ : GN → RBr. Then the space
(RBr, ν̃) is a µ-boundary, that we call the breakpoint boundary. One can prove the non-
triviality of this boundary by following steps similar to those in the proof of [Sta21, Lemma
7.3], or alternatively, this will follow from the proof of Theorem B in the next subsection.
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8.2. Bounded harmonic functions not coming from (S1, ν). Recall that we denote
by (S1, ν) the µ-boundary coming from the natural action of G on the circle. In this
subsection, we provide a family of harmonic functions defined through the breakpoint
boundary (RBr, ν̃) that cannot be obtained from (S1, ν) via the Poisson transform.

Lemma 8.4. Let G be a countable subgroup of PAff+(S1) whose action on S1 is minimal,
proximal and topologically nonfree, and let µ be a nondegenerate probability measure on
G such that

∑
g∈G µ(g)|Brg| < ∞. Then for every n ∈ N+ there exists a µ-harmonic

function fn : G → [0, 1] with fn(eG) > 1/2 and an element an ∈ G such that

diam(supp(an)) −−−→
n→∞

0 and fn(an) −−−→
n→∞

0.

Proof. Consider an element a ∈ G\{eG} such that supp(a) is strictly contained in S1 (such
an element exists because the action of G is topologically nonfree). Fix y ∈ ∂(supp(a)), so
that y ∈ Br. Since the action of G on S1 is minimal and proximal, there exists a sequence
{tn}n≥0 ⊂ G such that diam(tn(supp(a))) ≤ 1/n. Since the measure ν̃ is nonzero, for
every n ∈ N+ there exists a bounded open set Un ⊂ R such that the bounded function
fn : G → [0, 1] defined on g ∈ G by

fn(g) = Pg
[{

w ∈ GN : C∞(w)(tn(y)) ∈ Un
}]

satisfies fn(eG) > 1/2. Note that the event {w ∈ GN : C∞(w)(tn(y)) ∈ Un} is shift-
invariant up to P-measure zero, and hence the function fn is µ-harmonic.

For each n ∈ N+ define bn = tnat
−1
n . Then we have fn(bjn) = P

[
C∞(bjnw)(tn(y)) ∈ Un

]
for every j ∈ N+. Using Equation (12) we get

C∞(bjnw)(tn(y)) = C
bj

n
(tn(y)) + S

bj
n
C∞(w)(tn(y)) = C

bj
n
(tn(y)) + C∞(w)(tn(y)), (13)

where in the last equality we used that bjn fixes tn(y). By iterating Equation (12) and
using that a−j fixes y, we see that

C
bj

n
(tn(y)) = Ctnajt−1

n
(tn(y)) = Ctnaj (tn(y)) + Stnaj Ct−1

n
(tn(y))

= Ctnaj (tn(y)) + Ct−1
n

(a−j(y))

= Ctnaj (tn(y)) + Ct−1
n

(y)

= Ctn(tn(y)) + StnCaj (tn(y)) + Ct−1
n

(y)

= Ctn(tn(y)) + Caj (y) + Ct−1
n

(y) = jCa(y).

The above together with Equation (13) shows that fn(bjn) = P [jCa(y) + C∞(w)(tn(y)) ∈ Un] .
Next, note that Ca(y) ̸= 0 by the choice of y. Since Un is bounded, there exists jn ∈ N+

sufficiently large so that fn(bjnn ) < 1/n. Denote an := bjnn . Then the diameter of
supp(an) = supp(bn) = tn(supp(a)) goes to 0 as n → ∞, and hence fn(an) −−−→

n→∞
0. □

We can now present the proof of Theorem B.

Proof of Theorem B. Looking for a contradiction, let us suppose that the breakpoint
boundary is a G-equivariant quotient of (S1, ν). For every n ∈ N+ consider µ-harmonic
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functions fn : G → [0, 1] and elements an ∈ G as in Lemma 8.4. Then there exist functions
hn ∈ L∞(S1, ν) such that

fn(g) =
∫
S1
hn(g(x)) dν(x) for all g ∈ G.

Since the Poisson transform is an isometry (Theorem 2.2), we have that ∥hn∥∞ ≤ 1.
Write In = supp(an), so hn(an(x)) = hn(x) whenever x ̸∈ In and

|fn(an) − fn(eG)| ≤
∫
S1\In

|hn(an(x)) − hn(x)| dν(x) +
∫
In

|hn(an(x)) − hn(x)| dν(x)

=
∫
In

|hn(an(x)) − hn(x)| dν(x) ≤ 2ν(In)∥hn∥∞ ≤ 2ν(In) −−−→
n→∞

0.

However, from Lemma 8.4 we have that lim infn→∞|fn(an) − fn(eG)| ≥ 1/2. This is a
contradiction. □

Remark 8.5. When G is Thompson’s group T we can provide a single µ-harmonic func-
tion that does not arise from (S1, ν). Indeed, in this case Br = Z[1/2]/Z and, after
defining configurations using logarithms in base 2, we have a µ-boundary (ZZ[1/2]/Z, ν̃)
where ZZ[1/2]/Z is the space of functions from Z[1/2]/Z to Z. Pick any y ∈ Z[1/2]/Z and
a k ∈ Z so that the function defined by f(g) = Pg [C∞(w)(y) = k] for each g ∈ G satisfies
f(eG) > 0.

Consider for every n ≥ 1 the element an ∈ T defined by

an(x) =


y + 2n(x− y) if y ≤ x < y + 2−2n

y + 2−n − 2−3n + 2−n(x− y) if y + 2−2n < x < y + 2−2n + 2−n

x elsewhere,

see Figure 3.

0 1

1

Figure 3. The maps an for y = 1/2 and n = 2 (blue), n = 3 (green) and
n = 4 (red).

Then, we have that
• an(y) = y,
• supp(an) is a dyadic interval containing y and of length 2−n + 2−2n, and
• the derivative jump of an at y is equal to 2n.

This implies that both diam(supp(an)) and f(an) converge to 0 as n goes to infinity. From
this point, one can continue just as in the proof of Theorem B to conclude that there is
no h ∈ L∞(S1, ν) such that f(g) =

∫
S1 h(g(x)) dν(x) for all g ∈ G.
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