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Abstract. Let µ1, µ2 be probability measures on Diff1
+(S1) satisfying a suitable moment con-

dition and such that their supports genererate discrete groups acting proximally on S1. Let

(fn
ω )n∈N, (f

n
ω′ )n∈N be two independent realizations of the random walk driven by µ1, µ2 respec-

tively. We show that almost surely there is an N ∈ N such that for all n ≥ N the elements

fn
ω , fn

ω′ generate a nonabelian free group. The proof is inspired by the strategy by R. Aoun for

linear groups and uses work of A. Gorodetski, V. Kleptsyn and G. Monakov, and of P. Barrientos

and D. Malicet. A weaker (and easier) statement holds for measures supported on Homeo+(S1)

with no moment conditions.

1. Context and contributions

The Tits alternative is a celebrated theorem by J. Tits which asserts that finitely generated linear

groups are either virtually solvable or contain a nonabelian free group [Tit72]. This alternative

fails for groups of homeomorphisms of the circle, but a weaker alternative (sometimes called a

dynamical Tits alternative, see [MM23]) still holds.

Theorem 1.1 (G. Margulis [Mar00], see also V. Antonov [Ant84]). Let G be a subgroup of

Homeo(S1). Then either

i. G is elementary, that is, the action of G preserves a probability measure on S1, or

ii. G contains a ping-pong pair, that is, two elements f, g ∈ G such that there are pairwise

disjoint open subsets U1, U2, V1, V2 of S1 with f(S1 − U1) ⊆ V1, g(S
1 − U2) ⊆ V2.

The previous options are mutually exclusive and, by the ping-pong lemma, condition (ii) implies

that f, g generate a nonabelian free group in G. We are interested in how generic these two elements

are. As a first approximation, there is a dense Gδ subset W of Homeo(S1)×Homeo(S1) such that

any pair of elements in W generate a nonabelian free group [Ghy01, Proposition 4.5] (see also

[Tri14, Theorem 6.9]). Our viewpoint will be probabilistic instead of topological, inspired by the

following result of R. Aoun for linear groups. We first fix some notation: a probability measure

µ on a group G is said to be nondegenerate if the semigroup generated by its support is all G.

Given nondegenerate probability measures µ1, µ2 on groups G1, G2 we let (Ωi,Pi), i = 1, 2 be the

probability space (GN
i , µ

⊗N
i ), and we write ω = (fωn

)n∈N for an element of Ω1 and ω′ = (fω′
n
)n∈N

for an element of Ω2. Also, denote fnω for the right random walk fωn ◦ fωn−1 ◦ · · · ◦ fω0 at time

n ∈ N.

Theorem 1.2 (R. Aoun [Aou11, Aou13]). Let G be a real algebraic linear group that is semisimple

and with no compact factors, and let G1, G2 be Zariski-dense subgroups of G. If µ1, µ2 are non-

degenerate probability measures on G1, G2 respectively with finite exponential moment, then there

exists ρ ∈ (0, 1) such that

P1 ⊗ P2 [(ω, ω
′) ∈ Ω1 × Ω2 such that fnω , f

n
ω′ are a ping-pong pair ] ≥ 1− ρn
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for all sufficiently large n ∈ N.

In the previous statement, two elements f, g ∈ GLd(R), d ∈ N are said to be a ping-pong pair if

the conditions in (ii) hold for their natural action on the projective space PRd, and the measure µ

is said to have exponential moment if
∫
G
∥g∥δ dµ(g) is finite for some δ > 0 (here ∥·∥ is any norm

on d× d matrices).

When specialized to PSL2(R) acting on S1, the proof shows that the situation depicted in Figure

1 occurs with probability converging to 1 exponentially fast in n ∈ N. That is, there exist disjoint

intervals In,ω, In,ω′ , Jn,ω, Jn.ω′ ⊂ S1 that testify that fnω , f
n
ω′ are a ping-pong pair. The intervals

In,ω, In,ω′ can be taken centered around fnω (x), f
n
ω′(y) where x, y ∈ S1 are arbitrary and fixed

beforehand. The intervals Jn,ω, Jn,ω′ converge as n increases to the repellers σ(ω), σ(ω′) of the

random walks fnω , f
n
ω′ (see the next section for the definition of σ). To control the probabilities

that they intersect, their diameters decrease to 0 exponentially fast in n.

In,ω

Jn,ω

fnω

In,ω′

Jn,ω′

fnω′

The main result of this paper shows that this situation remains typical for a pair of independent

random walks on countable subgroups of Diff1
+(S

1), the group of orientation-preserving diffeomor-

phisms of S1, provided the action of the subgroups on S1 is proximal. This condition is almost

always fulfilled for a group acting on S1 admitting no invariant measures on S1, see Theorem 2.2

below for a precise statement. For a function ϕ : S1 → R, set

|ϕ|Lip = sup
x̸=y∈S1

|ϕ(x)− ϕ(y)|
d(x, y)

.

Theorem A. Let G1, G2 be countable subgroups of Diff1
+(S

1) such that the actions of G1 and of

G2 on S1 are proximal. Let µ1, µ2 be nondegenerate probability measures on G1, G2 respectively

such that there exists δ > 0 so that the integral∫
Gi

max
{
|g|Lip,

∣∣g−1
∣∣
Lip

}δ
dµ(g)

is finite for i = 1, 2.

Then there exists ρ ∈ (0, 1) such that

P1 ⊗ P2 [(ω, ω
′) ∈ Ω1 × Ω2 such that fnω , f

n
ω′ are a ping-pong pair ] ≥ 1− ρn

for all sufficiently large n ∈ N.

As with Theorem 1.2, the Borel-Cantelli lemma immediately implies the following.

Corollary B. Let µ1, µ2 be probability measures on Diff1
+(S

1) satisfying the same assumptions as

in Theorem A. For P1 ⊗ P2-almost every (ω, ω′) there exists N ∈ N such that fnω , f
n
ω′ generate a

nonabelian free group for all n ≥ N .
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The conclusion of Theorem A is known to be true in other settings: if M is a proper hyperbolic

space such that Isom(M) acts cocompactly on M and µ is a measure on Isom(M) generating

a nonelementary group, then this is [AS22, Theorem 1.10]. The case of nonelementary hyper-

bolic groups acting on their Gromov boundary and finitely supported µ was treated previously in

[GMO10].

We do not know if the statement in Corollary B is true for groups of biLipschitz homeomorphisms

of S1.1 To put this in perspective, we show that a weakening of Corollary B is true for groups

of homeomorphisms of S1, even without moment assumptions on the measures µi and relaxing

the proximality assumption on the Gi to “no invariant measures”. It is an application of results

in [DKN07], but has not appeared previously in the literature up to our knowledge. Denote by

Homeo+(S
1) the group of orientation-preserving homeomorphisms of S1.

Theorem C. Let G1, G2 be countable subgroups of Homeo+(S
1) such that the actions of G1

and G2 on S1 do not admit any invariant probability measures, and let µ1, µ2 be nondegenerate

probability measures on G1, G2 respectively. Then for P1 ⊗ P2-almost every (ω, ω′) ∈ Ω1 ×Ω2, the

set of n ∈ N such that fnω , f
n
ω′ are a ping-pong pair has density 1, that is,

lim
N→∞

1

N
|{0 ≤ n ≤ N | fnω , fnω′ are a ping-pong pair}| = 1.

The proof of Theorem C requires only the tools developped in [DKN07, Appendice] and general

statements on contracting random dynamical systems from [Mal17]. In contrast, the proof of

Theorem A requires more ingredients. For instance, to apply the strategy of [Aou11] in this

context it is essential to know that exponential contractions occur in mean and that the stationary

measure is Hölder continuous (see Theorems 4.2 and 2.6 below respectively). The first condition

has been already proven in different situations in the literature by K. Gelfert and G. Salcedo

[GS23], A. Gorodetski and V. Kleptsyn [GK21], and P. Barrientos and D. Malicet [BM24], all

of which require (at least) that µ be supported on Diff1
+(S

1). The second one is a very general

theorem by A. Gorodetski, V. Kleptsyn and G. Monakov [GKM22]. One important difference with

the linear setting lies in the dynamics of individual elements of Homeo+(S
1): very “contracting”

homeomorphisms of the circle do not have a canonically defined repeller or attractor. Proposition

4.4 below deals with this issue.

Acknowledgements. The author wishes to thank K. Gelfert for answering questions on [GS24],

V. Kleptsyn for useful conversations around this subject and B. Deroin for pointing out [Aou11].

The author also thanks his advisor N. Matte Bon for constant encouragement and useful advice,

and M. Triestino for very pertinent stylistic remarks.

2. Preliminaries

We review some basic theory on random dynamical systems and groups acting on the circle,

and introduce some notation. For more details on this material, see [Ghy01, DKN07, Mal17].

Notation. Given a metric space (X, d), A ⊆ X and ε > 0, we write Aε = {x ∈ X | d(x,A) ≤ ε}.
We will denote by d the metric on S1 coming from an identification S1 = R/Z, so that diam(S1) =

1/2. All probability measures on S1 in this paper are always assumed to be Borel.

1The relevance of the biLipschitz condition comes from the fact that any countable subgroup of Homeo+(S1) is

conjugated to a group of biLipschitz homeomorphisms, see [DKN07, Théorème D].
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Random dynamical systems. A random dynamical system (G,µ) ↷ X (or a random walk on

X) is the data of a group G acting by homeomorphisms on a compact metric space (X, d) and of a

probability measure µ on G. We always assume that µ is nondegenerate, that is, that the semigroup

generated by µ is G. Denote by (Ω,P) the probability space (GN, µ⊗N) and set fnω = fωn ◦ · · · ◦ fω0

when n ∈ N, ω = (fωk
)k∈N ∈ Ω. A µ-stationary measure is a Borel probability measure on X such

that µ ∗ ν = ν, where

µ ∗ ν(A) =
∫
G

ν(g−1A) dµ(g)

for all Borel A ⊆ X.

We say that (G,µ) ↷ X is locally contracting if for all x ∈ X, P-almost surely there exists a

neighborhood B ⊂ X of x such that diam(fnω (B)) −−−−→
n→∞

0.

Proposition 2.1 ([Mal17, Propositions 4.8 and 4.9]). Suppose (G,µ) ↷ X is locally contracting.

Then there are finitely many ergodic µ-stationary measures ν1, . . . , νd, and their supports are exactly

the minimal G-invariant sets in X.

Moreover, for every x ∈ X and P-almost every ω there exists a unique index i = i(ω, x) ∈
{1, . . . , d} such that fnω (x) equidistributes towards νi, that is

1

N

N∑
n=0

1fn
ω (x) −−−−→

N→∞
νi (2.1)

in the weak ∗-topology.

Groups acting on the circle. We say that a group action G↷ S1 is proximal if for every strict

subinterval I ⊂ S1 and ε > 0 there exists g ∈ G such that diam(g(I)) < ε. The action is said to be

locally proximal if it is not proximal and every x ∈ S1 is the endpoint of an interval I ⊂ S1 such

that for all ε > 0 there exists g ∈ G with diam(g(I)) < ε. In this context, we say that a group

action G ↷ϕ S1 is semiconjugate to G ↷ψ S1 if there exists a continuous surjection π : S1 → S1

such that ψ(g)◦π = π ◦ϕ(g) for all g ∈ G, and such that π is locally non-decreasing and has degree

one (this means that any lift of π to π̃ : R → R is non-decreasing and satisfies π̃(x+ 1) = π̃(x) + 1

for all x ∈ R). When such a π does not necessarily have degree 1, we call it a factor map.

The following theorem is essentially equivalent to Theorem 1.1 from the introduction: in cases

(ii.b) and (ii.c) below G always contains a free group, and there exists an invariant probability

measure for G in cases (i) (a mean of Dirac measures on a finite orbit on S1) and (ii.a) (the image

of Lebesgue measure under a conjugacy to a group of rotations).

Theorem 2.2 (see [Ghy01]). Consider an action G ↷ϕ S1 by orientation-preserving homeomor-

phisms. Then exactly one of the following options is satisfied.

i. There exists a finite orbit.

ii. There exists a unique closed minimal set Λ, which is either S1 or a Cantor set. In the

latter case, by collapsing the countably many connected components of S1 − Λ we can

semiconjugate ϕ to a minimal group action G↷ S1.

Moreover, in the minimal case a further distinction exists: either

ii.a the action is free and thus conjugated to an action by rotations, or

ii.b the action is proximal, or

ii.c the action is locally proximal and not proximal, and there exists d ∈ N, d ≥ 2 and a

continuous d-to-one covering π : S1 → S1 that intertwines ϕ with a proximal action.

Thus whenever G ↷ϕ S1 does not preserve any probability measure on S1, there exists d ∈ N
and a factor map π : S1 → S1 that is d-to-one on the minimal set of G (except for a countable
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number of points), and that intertwines ϕ with a proximal and minimal action. We will call this

integer d the degree of proximality of ϕ, but this notation is not standard.

Random walks on S1. In this subsection, fix a countable group G and a nondegenerate proba-

bility measure µ on G. The random walk on S1 defined by a proximal group action G↷ϕ S1 has

been well studied.

Theorem 2.3 ([DKN07, Appendice]). Consider an action G ↷ S1 by orientation-preserving

homeomorphisms with no invariant probability measure on S1.

i. There exists a unique µ-stationary probability measure ν on S1, which is atomless and is

supported on the minimal set of G.

ii. If the action of G on S1 is proximal, there exists a random variable ω ∈ Ω 7→ σ(ω) ∈ S1

such that for P-almost every ω we have

(fnω )
−1ν −−−−→

n→∞
1σ(ω)

in the weak-∗ topology.

We call the random variable σ(ω) from the previous theorem the repeller of the random walk

(fnω )n∈N. Its distribution is the unique µ-stationary measure on S1 where µ ∈ Prob(G) is defined

on g ∈ G as µ(g−1), and is thus nonatomic.

Notice that the measure (fnω )
−1ν is given by ν(fnω (I)) on every interval I ⊆ S1, so the statement

in (ii) says that fnω (I) is contracted into a ν-null set unless I contains σ(ω), in which case it is

expanded to the whole circle. As a consequence, for all x, y ∈ S1 we have P-almost surely that x

and y are not σ(ω) since the law of σ(ω) is nonatomic, and hence limn→∞ d(fnω (x), f
n
ω (y)) = 0.

This conclusion is the subject of [KN04] (see also [Ant84]), and justifies the fact that we will use

fnω (0) (or f
n
ω (x) for some nonrandom x ∈ S1) as an “attractor” for fnω in the proofs below.

When G↷ S1 is not necessarily proximal a similar statement holds, and even more is true: the

rate of contraction of fnω (I) when σ(ω) ̸∈ I is exponential.

Theorem 2.4. Consider an action G ↷ S1 by orientation-preserving homeomorphisms with no

invariant probability measure on S1. Let d ∈ N be the degree of proximality of G↷ S1.

There exist measurable functions σ1, . . . , σd : Ω → S1 such that the following hold.

i. [Mal17, Theorem A] There exists λ > 0 such that for P-almost every ω and every closed

interval I ⊂ S1 \ {σ1(ω), . . . , σd(ω)} we have

diam(fnω (I)) ≤ e−λn

for all sufficiently large n ∈ N.
ii. [Mal17, Proposition 4.3] P-almost surely, the set {σ1(ω), . . . , σd(ω)} has size d.

The random set {σ1, . . . , σd} from the previous theorem is called the repelling set of the random

walk (fnω )n∈N. In this setting, let π : S1 → S1 be a factor map to a minimal and proximal action

and Λ ⊆ S1 be the minimal set of G ↷ S1. Define E ⊂ S1 as the countable set of images of

connected components of S1 \ Λ, so for all x ∈ S1 \ E, the fiber π−1(x) has size d. Denote by

σ(ω) the repeller of the random walk in the image of π. If σ(ω) ∈ S1 \ E (which happens P-
almost surely, since the distribution of σ is nonatomic), then π−1(σ(ω)) = {σ1(ω), . . . .σd(ω)} by

the defining properties of σ(ω) and {σ1(ω), . . . , σd(ω)}. We record this as a proposition.

Proposition 2.5. Consider an action G ↷ S1 by orientation-preserving homeomorphisms with

no invariant probability measure on S1. Denote by π : S1 → S1 a factor map to a minimal and

proximal action, and by ω 7→ σ(ω) the repeller of the random walk induced in the image of π.
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Then P-almost surely, the repelling set F (ω) = {σ1(ω), . . . , σd(ω)} of (fnω )n∈N satisfies π−1(σ(ω)) =

F (ω).

We finish with the Hölder regularity of the unique µ-stationary measure of a proximal random

dynamical system (G,µ) ↷ S1. The original statement in [GKM22, Theorem 2.3] is written

for G ≤ Diff1(M) for any compact smooth manifold M , but [GKM22, Remark 2.10] shows that

differentiability of the maps in G is not essential: what is truly needed is that all maps of G be

biLipschitz.

Theorem 2.6 ([GKM22, Theorem 2.3]). Consider an action G ↷ S1 by orientation-preserving

diffeomorphisms of class C1 with no invariant probability measure on S1, and assume that for some

δ > 0 the integral ∫
G

max
{
|g|Lip,

∣∣g−1
∣∣
Lip

}δ
dµ(g)

is finite.

Then there exist C,α > 0 such that any µ-stationary probability measure ν on S1 is (C,α)-

Hölder continuous, that is, ν(B(x, r)) ≤ Crα for all x ∈ S1 and r > 0.

3. Probabilistic Tits alternative in Homeo+(S
1)

Proof of Theorem C. Fix µ1, µ2 two nondegenerate probability measures on countable sub-

groups G1, G2 of Homeo+(S
1) that do not preserve any probability measure on S1. For i = 1, 2,

let

· νi be the unique µi-stationary measure on S1 and Λi ⊆ S1 the minimal set of Gi,

· di ∈ N be the degree of proximality of Gi ↷ S1, and

· πi : S1 → S1 be a factor map of Gi ↷ S1 to a minimal proximal action of Gi such that πi

is di-to-one νi-almost everywhere.

If ω ∈ Ω1, we write

· (gnω)n∈N for the random walk driven by µ1 acting on the image of π1 and σ(ω) ∈ S1 for its

repelling point, and

· F (ω) ⊂ S1 for the repelling set of the random walk (fnω )n∈N.

When ω′ ∈ Ω2 we denote by gnω′ , σ(ω′) and F (ω′) the same objects associated to µ2.

Fix once and for all x ∈ S1, y ∈ S1 such that π−1
1 (x) and π−1

2 (y) have size d1, d2 respectively

and are disjoint.

Claim. The following properties are true for P1 ⊗ P2-almost every (ω, ω′) ∈ Ω1 × Ω2.

i. The sequence {(fnω (a), fnω′(b))}n∈N ⊂ S1 × S1 equidistributes with respect to ν1 ⊗ ν2 for

every a ∈ π−1
1 (x) and b ∈ π−1

2 (y).

ii. The equalities F (ω) = π−1
1 (σ(ω)) and F (ω′) = π−1

2 (σ(ω′)) hold.

iii. The sets F (ω), F (ω′), π−1
1 (x) and π−1

2 (y) are pairwise disjoint.

Proof of the claim: (i) The random dynamical system (G1 × G2, µ1 ⊗ µ2) ↷ S1 × S1 is locally

contracting since (G1, µ1) ↷ S1, (G2, µ2) ↷ S1 are locally contracting. Moreover, for (x, y) ∈
S1 × S1 the orbit OrbG1×G2

((x, y)) accumulates on Λ1 × Λ2, so Λ1 × Λ2 is the unique G1 × G2-

minimal set and Proposition 2.1 shows that S1 × S1 has a unique µ1 ⊗ µ2-stationary measure,

namely ν1 ⊗ ν2. Again Proposition 2.1 gives equidistribution P1 ⊗ P2-almost surely.

(ii) This is Proposition 2.5.

(iii) By independence it suffices to show that P1 [z ∈ F (ω)] = P2 [z ∈ F (ω′)] = 0 for any fixed

z ∈ S1, but this follows from P1 [z ∈ F (ω)] = P1 [π1(z) = σ(ω)] and the fact that the distribution

of σ(ω) is nonatomic. □
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We will assume in what follows that the pair (ω, ω′) ∈ Ω1 ×Ω2 satisfies the previous properties.

Fix ε > 0 and pick δ > 0 such that any interval I ⊂ S1 with |I| ≤ δ has ν1(I), ν2(I) ≤ ε and also

ν1⊗ ν2(Dδ) ≤ ε where D ⊂ S1×S1 is the diagonal (here S1×S1 is equipped with the l∞-metric).

Choose χ = χ(ω, ω′) ∈ (0, δ/2) such that F (ω)χ and F (ω′)χ are disjoint.

Suppose that I ⊂ S1 has diameter at most χ and a ∈ π−1
1 (x), b ∈ π−1

2 (y). Equidistribution

implies that the quantities

lim sup
N→∞

1

N
|{0 ≤ n < N | fnω (a) ∈ I}|, lim sup

N→∞

1

N
|{0 ≤ n < N | fnω′(b) ∈ I}| (3.1)

and lim sup
N→∞

1

N
|{0 ≤ n < N |(fnω (a), fnω′(b)) ∈ Dχ}|

are all smaller than ε. By considering the different combinations in which the intervals in fnω (π
−1
1 (x))χ,

fnω′(π
−1
2 (y))χ, F (ω)χ and F (ω′)χ can intersect, we conclude that

lim sup
N→∞

1

N

∣∣{0 ≤ n < N | fnω (π−1
1 (x))χ, fnω′(π−1

2 (y))χ, F (ω)χ and F (ω′)χ are not pairwise disjoint}
∣∣

is at most (d21 + d22 + 3d1d2)ε.

Take χ̄ > 0 such that for i = 1, 2, the connected components of π−1
i (I) have diameter at

most χ if I ⊂ S1 has diameter at most χ̄. By Theorem 2.3, P1 ⊗ P2-almost surely we can find

n0 = n0(ω, ω
′) ∈ N such that for all n ≥ n0 the inclusions

gnω(S
1 − σ(ω)χ̄) ⊆ gnω(x)

χ̄ and gnω′(S1 − σ(ω′)χ̄) ⊆ gnω′(y)χ̄

hold, so F (ω) = π−1
1 (σ(ω)), F (ω′) = π−1

2 (σ(ω′)) shows that

fnω (S
1 − F (ω)χ) ⊆ fnω (π

−1
1 (x))χ and fnω′(S1 − F (ω′)χ) ⊆ fnω′(π−1

2 (y))χ. (3.2)

Equation (3.2) implies that every n in the set

N = {n ≥ n0 | fnω (π−1
1 (x))χ, fnω′(π−1

2 (y))χ, F (ω)χ and F (ω′)χ are pairwise disjoint}

is such that fnω , f
n
ω′ are a ping-pong pair. Thus

lim
N→∞

1

N
|{0 ≤ n < N | fnω , fnω′ are a ping-pong pair}| ≥ lim

N→∞

1

N
|N ∩ [0, N ]|

≥ 1− (d21 + d22 + 3d1d2)ε,

and since ε > 0 was arbitrary the conclusion follows. □

4. Probabilistic Tits alternative in Diff1
+(S

1)

Preliminary statements. In this subsection G is a countable subgroup of Diff1
+(S

1) that acts

proximally on S1 and µ is a nondegenerate probability measure on G such that

there exists δ > 0 so that

∫
G

max
{
|g|Lip,

∣∣g−1
∣∣
Lip

}δ
dµ(g) is finite. (M)

We now state and prove Theorem 4.2, which gives (uniform) exponential contractions in mean

in our context. It is a variation on similar statements that have appeared independently in [GK21,

Proposition 4.18] and [GS23, Theorem 1.3], assuming that µ has finite support in Diff1
+(S

1). The

proof follows [GK21, Proposition 4.18] closely, along with additional input from [BM24, Proposition

4.5]. This is the only point in the proof where we use that µ is supported in Diff1
+(S

1), namely to

obtain inequality (4.1) below.
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Theorem 4.1 ([BM24, Proposition 4.5]). If µ satisfies the condition (M), there exist r, λ > 0, s0 ∈
(0, 1] and k ∈ N+ such that

E
[
d(fk1ω (x), fk1ω (y))s

]
≤ e−λd(x, y)s (4.1)

for all x, y ∈ S1 such that d(x, y) ≤ r and all s ∈ (0, s0].

Theorem 4.2. There exist λ+ > 0, s ∈ (0, 1] and N ∈ N such that for all n ≥ N we have

sup
x̸=y∈S1

E
[
d(fnω (x), f

n
ω (y))

s

d(x, y)s

]
≤ e−λ+n.

In particular, for all n ≥ N we have

sup
x,y∈S1

E [d(fnω (x), f
n
ω (y))] ≤ e−λ+n

Proof. Take r, λ > 0, s0 ∈ (0, 1] and k1 = k ∈ N+ given by Theorem 4.1, so that (4.1) holds for all

x, y ∈ S1 with d(x, y) ≤ r and all s ∈ (0, s0].

Claim. For every ε1, ε2 > 0 there exists k2 ∈ N+ such that

P
[
d(fk2ω (x), fk2ω (y)) < ε1

]
> 1− ε2

for all x, y ∈ S1.

Proof of the claim. This is [GK21, Lemma 4.23], but we give the proof for completeness.

Let l ∈ N+ be large enough so that the points xj = j/l ∈ S1, 0 ≤ j ≤ l − 1 satisfy

P [σ(ω) ∈ (xj , xj+1)] ≤ ε2/4

for each j. When 0 ≤ j ≤ l− 1 denote by Ij the open interval with endpoints xj , xj+1 and length

1− 1/l. Choose k2 ∈ N large enough so that for every 0 ≤ j ≤ l − 1, we have

P
[
diam(fk2ω (Ij)) ≤ ε1 | σ(ω) ∈ (xj , xj+1)

]
≥ 1− ε2/2.

If x, y ∈ S1, then x, y ∈ Ij for all indices 0 ≤ j ≤ l − 1 except at most two values j1, j2. Thus

P
[
d(fk2ω (x), fk2ω (y)) < ε1

]
≥

l−1∑
j=0

j ̸=j1,j2

P
[
diam(fk2ω (Ij)) ≤ ε1 | σ(ω) ∈ (xj , xj+1)

]
P [σ(ω) ∈ (xj , xj+1)]

≥ (1− ε2/2)(1− 2ε2/4) = (1− ε2/2)
2 ≥ 1− ε2. □

Fix s ∈ (0, s0] and find k2 ∈ N+ such that

P
[
d(fk2ω (x), fk2ω (y)) < r/41/s

]
> 1− rs/4

for all x, y ∈ S1. If we take x, y ∈ S1 such that d(x, y) ≥ r, then

E
[
d(fk2ω (x), fk2ω (y))s

]
≤ P

[
d(fk2ω (x), fk2ω (y)) > r/41/s

]
+
( r

41/s

)s
P
[
d(fk2ω (x), fk2ω (y)) < r/41/s

]
≤ rs

4
+
rs

4
≤ 1

2
d(x, y)s.

For every k ∈ N+ and x, y ∈ S1, define a random variable Kk(ω) ∈ N+ (which depends on x, y)

as follows: if d(x, y) ≤ r (resp. d(x, y) > r) apply k1 (resp. k2) random iterations of ω = (fωn)n∈N

to the pair x, y. Repeat the process on the pair fk1ω (x), fk1ω (y) (resp. fk2ω (x), fk2ω (y)) applying

iterations of (fωn+k1
)n∈N (resp. (fωn+k2

)n∈N) until the total number of iterations exceeds k for the

first time. By definition we have k ≤ Kk ≤ k +max{k1, k2}, and by the strong Markov property

we see that

E
[
d
(
fKk(ω)
ω (x), fKk(ω)

ω (y)
)s]

≤ max

{(
1

2

) k
k2

, e−
k
k1
λ

}
d(x, y)s. (4.2)



9

The fωi
are independent and distributed along µ, and hence

E

[∣∣∣∣(fωKk
◦ · · · ◦ fωk

)−1
∣∣∣∣s
Lip

]
≤ E

[∣∣∣f−1
ωKk

∣∣∣s
Lip

· · ·
∣∣f−1
ωk

∣∣s
Lip

]
≤ E

[∣∣∣f−1
ωk+max{k1,k2}

∣∣∣s
Lip

· · ·
∣∣f−1
ωk

∣∣s
Lip

]
=

∫
G

∣∣g−1
∣∣smax{k1,k2}
Lip

dµ(g). (4.3)

We deduce that

E
[
d(fkω(x), f

k
ω(y))

s/2
]
≤ E

[∣∣∣∣(fωKk
◦ · · · ◦ fωk

)−1
∣∣∣∣s/2
Lip

d
(
fKk(ω)
ω (x), fKk(ω)

ω (y)
)s/2]

≤ E

[∣∣∣∣(fωKk
◦ · · · ◦ fωk

)−1
∣∣∣∣s
Lip

]1/2

E
[
d
(
fKk(ω)
ω (x), fKk(ω)

ω (y)
)s]1/2

≤
(∫

G

∣∣g−1
∣∣smax{k1,k2}
Lip

dµ(g)

)1/2

max

{(
1

2

) k
2k2

, e−
k

2k1
λ

}
d(x, y)s/2,

where we have used (4.2) and (4.3) in the last inequality. If s ≤ δ/max{k1, k2}, where δ > 0

is provided by the condition (M), the term
∫
G

∣∣g−1
∣∣smax{k1,k2}
Lip

dµ(g) is also finite. But the term

max
{(

1
2

) k
2k2 , e−

k
2k1

λ
}

converges to 0 as k → ∞, and hence there exists k ∈ N+ and λ > 0 such

that

E
[
d(fkω(x), f

k
ω(y))

s
]
≤ e−λd(x, y)s

for all x, y ∈ S1 and 0 < s ≤ min{s0/2, δ/(2k1), δ/(2k2)}. By the Markov property, for all n ∈ N
we have

E [d(fnω (x), f
n
ω (y))

s] ≤ e−λ⌊n/k⌋d(x, y)s ≤ eλe−λn/kd(x, y)s.

The conclusion follows by setting λ+ = λ/(2k) and choosing N ∈ N so that eλe−λN/(2k) < 1. □

Remark. The previous theorem says that (G,µ) ↷ S1 is µ-contracting, according to the termi-

nology of Benoist-Quint in [BQ16, Section 11.1]. As a consequence, all of the limit laws available

for cocycles in this setting (that is, the central limit theorem, the law of the iterated logarithm

and large deviations estimates, see [BQ16, Section 12.1]) hold in this setting. In particular the

Lyapunov cocycle (g, x) 7→ log g′(x) satisfies these limit laws. This recovers [GS24, Theorem 1.14],

for instance. However, [BQ16, Theorem 12.1] requires the cocycle to be Lipschitz with integrable

Lipschitz constant, but the proofs go through without relevant changes if the Lipschitz condition

is replaced by a τ -Hölder one.

Denote by (f
n

ω)n∈N the left (or inverse) random walk f
n

ω = fω0
◦fω1

◦· · · fωn
. Define the random

variable T (ω) ∈ S1 as the repeller of the random walk
(
f−1
ωn

◦ f−1
ωn−1

◦ · · · ◦ f−1
ω0

)
n∈N

. The following

is an analogue of [Aou11, Theorem 4.16].

Proposition 4.3. Let λ+ > 0 be the constant provided by Theorem 4.2. There exist λ− > 0, N ∈ N
such that

sup
x∈S1

E
[
d
(
(fnω )

−1(x), σ(ω)
)]

≤ e−λ−n (4.4)

and

sup
x∈S1

E
[
d
(
f
n

ω(x), T (ω)
)]

≤ e−λ+n (4.5)

hold for n ≥ N . Moreover, there exist C−, α− > 0 such that the distribution of T is (C−, α−)-

Hölder continuous.
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Proof. By applying (4.4) to the random walk on Diff1
+(S

1) driven by µ where µ(g) = µ(g−1) for all

g ∈ Diff1
+(S

1) we conclude that (4.5) holds. The Hölder continuity of T also follows from Theorem

2.6 since µ also satisfies the assumption (M), so it suffices to prove (4.4).

Take n, k ∈ N with 0 < n < k and fix x, y ∈ S1. We have that

E
[
d
(
(fnω )

−1(x), σ(ω)
)]

≤ E
[
d
(
(fnω )

−1(x), (fkω)
−1(y)

)]
+ E

[
d
(
(fkω)

−1(y), σ(ω)
)]
.

Theorem 4.2 applied to the random walk driven by µ gives λ− > 0 such that

sup
u,v∈S1

E
[
d
(
f−1
ωn

◦ · · · ◦ f−1
ω0

(u), f−1
ωn

◦ · · · ◦ f−1
ω0

(v)
)]

≤ e−λ−n

for all sufficiently large n ∈ N. In particular we deduce that

E
[
d
(
(fnω )

−1(x), (fkω)
−1(y)

)]
=

∫
E
[
d
(
(fnω )

−1(x), (fnω )
−1 ◦ γ−1(y)

)]
dµ∗(k−n)(γ)

≤ sup
u,v∈S1

E
[
d
(
(fnω )

−1(u), (fnω )
−1(v)

)]
= sup
u,v∈S1

E
[
d
(
f−1
ωn

◦ · · · ◦ f−1
ω0

(u), f−1
ωn

◦ · · · ◦ f−1
ω0

(v)
)]

≤ e−λ−n

where we have used that the fωj
are independent and identically distributed in the last equality.

Hence the inequality

sup
x∈S1

E
[
d
(
(fnω )

−1(x), σ(ω)
)]

≤ e−λ−n + E
[
d
(
(fkω)

−1(y), σ(ω)
)]

(4.6)

holds, and by integrating (4.6) in dν(y) we conclude that

sup
x∈S1

E
[
d
(
(fnω )

−1(x), σ(ω)
)]

≤ e−λ−n + E
[∫

S1

d
(
(fkω)

−1(y), σ(ω)
)
dν(y)

]
= e−λ−n + E

[∫
S1

d(y, σ(ω)) d(fkω)
−1ν(y)

]
.

The dominated convergence theorem and Theorem 2.3, (ii) imply that

E
[∫

S1

d(y, σ(ω)) d(fkω)
−1ν(y)

]
−−−−→
k→∞

E
[∫

S1

d(y, σ(ω)) d1σ(ω)(y)

]
= 0,

so (4.4) holds. □

Recall that the proof of Theorem C (when the subgroups of Homeo+(S
1) act proximally) involves

trying to find for a given n ∈ N small disjoint open intervals U, V ⊂ S1 containing σ(ω) and fnω (0)

respectively such that fnω (S
1 \U) ⊆ V . Here, the diameters of U, V depend on ω but not on n. In

this sense, σ(ω) and fnω (0) are a repeller-attractor pair for fnω in a weak sense that is sufficient for

the proof of the qualitative statement in Theorem C. On the other hand, to show Theorem A we

need to show that P
[
fnω (S

1 \ Un) ⊂ Vn
]
is exponentially close to 1 as n increases, where Un and Vn

are disjoint intervals centered around σ(ω) and fnω (0) respectively such that diam(Un), diam(Vn)

are exponentially small in n. The fact that this contraction takes place does not follow from the

definition of σ(ω), since σ(ω) is defined by an asymptotic condition saying that P-almost surely any

fixed closed interval inside S1 \ {σ(ω)} is eventually contracted by fnω . Nevertheless, the following

proposition shows that σ(ω) and fnω (0) are a repeller-attractor pair for fnω in a strong sense suitable

for our purposes. This is one of the main points where the strategy deviates from the linear case.

Proposition 4.4. There exists ε ∈ (0, 1) such that

lim sup
n→∞

1

n
logP

[
fnω

(
S1 \ σ(ω)ε

n
)
is not contained in fnω (0)

εn
]
< 0.
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Proof. Let λ > 0, N ∈ N be the constants given by Theorem 4.2, so

sup
x,y∈S1

E [d (fnω (x), f
n
ω (y))] ≤ e−λn (4.7)

for all n ≥ N .

For n ≥ N define Kn = ⌊eλn/3⌋, the grid xnk = k/Kn ∈ S1, 0 ≤ k ≤ Kn − 1 and the event

Vn = {ω ∈ Ω | d(fnω (xnk ), fnω
(
xnk+1

)
) ≤ e−λn/2 for all 0 ≤ k ≤ Kn − 1},

so we have

P [V cn ] ≤
Kn∑
k=1

P
[
d
(
fnω (x

n
k ), f

n
ω (x

n
k+1)

)
≥ e−λn/2

]
≤ e−λn/2Kn ≤ e−λn/6,

where we have used the Markov inequality and (4.7).

Notice that if ω ∈ Vn, then there exists a unique interval Jn,ω ⊂ S1 of the form [xnj , x
n
j+1) such

that diam (fnω (Jn,ω)) ≥ 1− e−λn/2.

Claim. There exists C > 0 such that E [d(Jn,ω, σ(ω)) | Vn] ≤ Ce−λ1n for all sufficiently large

n ∈ N, where λ1 = max{λ/6, λ−} and λ− is given by Proposition 4.3.

Proof of the claim. Given ω ∈ Vn, define jn,ω ∈ S1 by

jn,ω =

(fnω )
−1(0) if 0 ∈ fnω (Jn,ω)

(fnω )
−1(1/2) otherwise.

Since diam (fnω (Jn,ω)) ≥ 1− e−λn/2, for all n > 2 log 2/λ we have that fnω (Jn,ω) contains 0 or 1/2,

so jn,ω ∈ Jn,ω. Thus

E [d(Jn,ω, σ(ω)) | Vn] ≤ E [diam(Jn,ω) + d(jn,ω, σ(ω)) | Vn]

≤ 1

Kn
+ E

[
d
(
(fnω )

−1(0), σ(ω)
)
| Vn

]
+ E

[
d
(
(fnω )

−1(1/2), σ(ω)
)
| Vn

]
≤ 1

Kn
+ P [Vn]

−1 (E [
d
(
(fnω )

−1(0), σ(ω)
)]

+ E
[
d
(
(fnω )

−1(1/2), σ(ω)
)])

for n > max{2 log 2/λ,N}. From the bound (4.4) and the fact that P[Vn] is bounded away from 0

we obtain the conclusion. □

Let C, λ1 > 0 be the constants given by the previous claim and take ε ∈ (e−λ1 , 1), so that

P
[
fnω

(
S1 \ σ(ω)ε

n
)
̸⊆ fnω (0)

εn
]
≤ P

[
fnω

(
S1 \ σ(ω)ε

n
)
̸⊆ fnω (0)

εn
∣∣∣Vn]+ P [V cn ]

≤ P
[
Jn,ω ̸⊆ σ(ω)ε

n

or fnω
(
S1 \ Jn,ω

)
̸⊆ fnω (0)

εn
∣∣∣Vn]+ P [V cn ] .

(4.8)

for all n ∈ N large enough. Since ε > e−λ/3 and Kn = ⌊eλn/3⌋, there exists a constant C ′ > 0 such

that the inequalities

P
[
Jn,ω ̸⊆ σ(ω)ε

n
∣∣∣Vn] ≤ P [d(Jn,ω, σ(ω)) ≥ εn − diam(Jn,ω) |Vn]

≤ E [d(Jn,ω, σ(ω) |Vn]
εn − 1/Kn

≤ C

(
e−λ1

ε

)n(
1

1− 1/(εnKn)

)
≤ C ′

(
e−λ1

ε

)n
(4.9)

hold, so the right-hand side of (4.9) decreases with exponential speed towards 0 by the choice of ε.
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Similarly, since εn ≥ e−λn/6 ≥ diam
(
fnω

(
S1 \ Jn,ω

))
for all sufficiently large n ∈ N, we see that

P
[
fnω

(
S1 \ Jn,ω

)
̸⊆ fnω (0)

εn
∣∣∣Vn] ≤ P [0 ∈ Jn,ω |Vn]

≤ P
[
0 ∈ Jn,ω and Jn,ω ⊆ σ(ω)ε

n
∣∣∣Vn]+ C ′

(
e−λ1

ε

)n
≤ P [d(0, σ(ω)) ≤ εn |Vn] + C ′

(
e−λ1

ε

)n
,

where we have used (4.9) in the second inequality. Moreover, Theorem 2.6 provides C ′′, α > 0 such

that

P [d(0, σ(ω)) ≤ εn] ≤ C ′′εαn,

and from (4.8) we conclude that

P
[
fnω

(
S1 \ Jn,ω

)
̸⊆ fnω (0)

εn
∣∣∣Vn] ≤ P [Vn]

−1
C ′′εαn + C ′

(
e−λ1

ε

)n
. (4.10)

The bounds (4.10) and (4.9) show that the right-hand side of (4.8) is exponentially small in n.

This finishes the proof of the proposition. □

From now on, the rest of the proof of Theorem A follows the strategy of [Aou11].

Proposition 4.5. For every t ∈ (0, 1) we have

lim sup
n→∞

1

n
logP [d(fnω (0), σ(ω)) ≤ tn] < 0.

Proof. We start with a version of [Aou11, Theorem 4.35] (which in turn is inspired by [Gui90,

Lemme 8]), which states that the variables fnω (0) and σ(ω) become asymptotically independent

with exponential speed as n→ ∞.

Claim. There exists a random variable S(ω) ∈ S1 independent of σ and constants C, λ > 0 such

that for any Lipschitz function ψ : S1 × S1 → R we have

|E [ψ (fnω (0), σ(ω))]− E [ψ (σ(ω), S(ω))]| ≤ Ce−λn|ψ|Lip

for sufficiently large n ∈ N, where

|ψ|Lip = sup
x,y,u,v∈S1

x̸=y or u ̸=v

|ψ(x, u)− ψ(y, v)|
d(x, y) + d(u, v)

.

Proof of the claim. Let λ−, λ+ > 0 be the constants given by Proposition 4.3. Consider an inde-

pendent copy ω′ = (fω′
n
)n∈N of the process ω (that is, a coupling of P with itself). Define S(ω′) as

the repeller of the random walk
(
f−1
ω′

n
◦ f−1

ω′
n−1

◦ · · · ◦ f−1
ω′

0

)
n∈N

, so that

sup
x∈S1

E
[
d
(
f
n

ω′(x), S(ω′)
)]

≤ e−λ+n

holds for all large n ∈ N.
Decompose

|E [ψ (fnω (0), σ(ω))]− E [ψ (σ(ω), S(ω′))]| ≤ △1 +△2 +△3 +△4

where

· △1 =
∣∣E [ψ (σ(ω), fnω (0))]− E

[
ψ
(
(fnω )

−1(0), fnω (0)
)]∣∣,

· △2 =

∣∣∣∣E [
ψ
(
(fnω )

−1(0), fnω (0)
)]

− E
[
ψ

((
f
⌈n/2⌉
ω

)−1

(0), fωn
◦ · · · ◦ fω⌈n/2⌉+1

(0)

)]∣∣∣∣,
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· △3 =

∣∣∣∣E [
ψ

((
f
⌈n/2⌉
ω

)−1

(0), fωn ◦ · · · ◦ fω⌈n/2⌉+1
(0)

)]
− E

[
ψ
(
σ(ω), f

⌊n/2⌋
ω′ (0)

)]∣∣∣∣
=

∣∣∣∣E [
ψ

((
f
⌈n/2⌉
ω

)−1

(0), f
⌊n/2⌋
ω′ (0)

)]
− E

[
ψ
(
σ(ω), f

⌊n/2⌋
ω′ (0)

)]∣∣∣∣, and
· △4 =

∣∣∣E [
ψ
(
σ(ω), f

⌊n/2⌋
ω′ (0)

)]
− E [ψ (σ(ω), S(ω′))]

∣∣∣.
Proposition 4.3 shows that △1 ≤ |ψ|Lipe−λ−n, △3 ≤ |ψ|Lipe−λ−n/2 and △4 ≤ |ψ|Lipe−λ+n/2 for

all large n ∈ N. Moreover

△2 ≤ |ψ|Lip

(
E
[
d

(
(fnω )

−1(0),
(
f⌈n/2⌉ω

)−1

(0)

)]
+ E

[
d
(
fnω (0), fωn

◦ · · · ◦ fω⌈n/2⌉+1
(0)

)])
= |ψ|Lip

(
E
[
d

(
(fnω )

−1(0),
(
f⌈n/2⌉ω

)−1

(0)

)]
+ E

[
d
(
f
n

ω(0), f
⌊n/2⌋
ω (0)

)])
≤ |ψ|Lip

(
E
[
d
(
(fnω )

−1(0), σ(ω)
)]

+ E
[
d

((
f⌈n/2⌉ω

)−1

(0), σ(ω)

)]
+ E

[
d
(
f
n

ω(0), T (ω)
)]

+ E
[
d
(
f
⌊n/2⌋
ω (0), T (ω)

)])
which is at most

|ψ|Lip
(
e−λ−n + e−λ−n/2 + e−λ+n + e−λ+n/2

)
by Proposition 4.3 again. The claim follows. □

For any ε ∈ (0, 1/2), take a 1/ε-Lipschitz function ϕε : [0, 1] → [0, 1] such that ϕ
∣∣
[0,ε]

= 1 and

ϕ
∣∣
[2ε,1]

= 0, so

1[0,ε] ≤ ϕε ≤ 1[0,2ε]

holds and ψε
.
= ϕε ◦ d : S1 × S1 → [0, 1] is also 1/ε-Lipschitz. Let C, λ > 0 be the constants given

by the previous claim.

Now for all n ∈ N large enough we have

P [d (fnω (0), σ(ω)) ≤ tn] ≤ E [ψtn (fnω (0), σ(ω))] ≤ E [ψtn (σ(ω), S(ω))] + Ce−λn|ψtn |Lip
≤ P [d (σ(ω), S(ω)) ≤ 2tn] + Ce−λn|ψtn |Lip
≤ sup
x∈S1

P [d(σ(ω), x) ≤ 2tn] + Ce−λn|ψtn |Lip,

where we have used the independence of σ and S in the last inequality. The first term

sup
x∈S1

P [d(σ(ω), x) ≤ 2tn]

is exponentially small in n by Theorem 2.6, and the second term

Ce−λn/2|ψtn |Lip = C

(
e−λ/2

t

)n
is also exponentially small in n whenever t > e−λ/2. The proposition is thus proven in this case,

and is also true for t ≤ e−λ/2 as a consequence. □

Remark. In the proof of the previous theorem we have abused notation by writing S(ω): the

random variable S is not a function of ω, and is defined on a larger probability space. We have

done so as to not to weigh down the notation with distinctions between this larger probability

space and its quotient (Ω,P), since all relevant means and measures of sets coincide with those of

P.

Proof of Theorem A. Fix two nondegenerate probability measures µ1, µ2 on countable sub-

groups G1, G2 of Diff1
+(S

1) acting proximally on S1 such that µ1, µ2 satisfy the moment condition

(M).
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Claim. For every n ∈ N let ω′ ∈ Ω2 7→ ln(ω
′) ∈ S1 be a measurable map. For every t ∈ (0, 1) we

have

lim sup
n→∞

1

n
logP1 ⊗ P2 [d(f

n
ω (0), ln(ω

′)) ≤ tn] < 0 (4.11)

and

lim sup
n→∞

1

n
logP1 ⊗ P2 [d(σ(ω), ln(ω

′)) ≤ tn] < 0. (4.12)

Proof of the claim. By independence, we have

P1 ⊗ P2 [d(f
n
ω (0), ln(ω

′)) ≤ tn] ≤ sup
x∈S1

P1 [d(f
n
ω (0), x) ≤ tn] = sup

x∈S1

P1

[
d(f

n

ω(0), x) ≤ tn
]
.

Proposition 4.3 and the Markov inequality imply that

P1

[
d
(
f
n

ω(0), T (ω)
)
≥ e−λ+n/2

]
≤ e−λ+n/2,

for some λ+ > 0 and all large n ∈ N, and thus

sup
x∈S1

P1

[
d
(
f
n

ω(0), x
)
≤ tn

]
≤ sup
x∈S1

P1

[
d (T (ω), x) ≤ tn + e−λ+n/2

]
+ e−λ+n/2.

Take C,α > 0 such that the distribution of T is (C,α)-Hölder, so

sup
x∈S1

P1

[
d(T (ω), x) ≤ tn + e−λ+n/2

]
≤ C(tn + e−λ+n/2)α

and

P1 ⊗ P2 [d(f
n
ω (0), ln(ω

′)) ≤ tn] ≤ C(tn + e−λ+n/2)α + e−λ+n/2

is exponentially small in n. This gives (4.11), and (4.12) follows in the same way. □

Take ε ∈ (0, 1) so that the conclusion of Proposition 4.4 is verified for P1 = µ⊗N
1 and P2 = µ⊗N

2 .

Given ω ∈ Ω1, ω
′ ∈ Ω2 and n ∈ N we say that fnω and fnω′ are in ε-transverse position at time

n if the intervals fnω (0)
εn , fnω′(0)ε

n

, σ(ω)ε
n

and σ(ω′)ε
n

are pairwise disjoint. This is exactly the

situation in Figure 1 for

In,ω = fnω (0)
εn , In,ω′ = fnω′(0)ε

n

, Jn,ω = σ(ω)ε
n

and Jn,ω′ = σ(ω′)ε
n

.

Proposition 4.5 shows that the probability that the pair (fnω (0)
εn , σ(ω)ε

n

) or the pair (fnω′(0)ε
n

, σ(ω′)ε
n

)

intersect is exponentially small in n. The previous claim shows that the probability that the re-

maining pairs

(fnω (0)
εn , σ(ω′)ε

n

), (fnω′(0)ε
n

, σ(ω)ε
n

), (fnω (0)
εn , fnω′(0)ε

n

) or (σ(ω)ε
n

, σ(ω′)ε
n

)

intersect is exponentially small in n. We conclude that

lim sup
n→∞

1

n
logP1 ⊗ P2 [f

n
ω and fnω′ are not in ε-transverse position ] < 0. □

References

[Ant84] V. A. Antonov, Modeling of processes of cyclic evolution type. Synchronization by a random signal,

Vestnik Leningradskogo Universiteta. Matematika, Mekhanika, Astronomiya (1984), no. vyp. 2, pp. 67–

76. (Cited on pages 1, 5).

[Aou11] Richard Aoun, Random subgroups of linear groups are free, Duke Mathematical Journal 160 (2011),

no. 1, pp. 117–173. (Cited on pages 1, 3, 9, 12).

[Aou13] , Comptage probabiliste sur la frontière de Furstenberg, Géométrie ergodique, Monogr. Enseign.
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